Université Paris 12 Val de Marne

Thèse

Heidi LIGERET

Détermination des effets mitochondriques de la curcumine et de ses dérivés ; proposition d’un mécanisme d’action impliquant le pore de transition de perméabilité
Remerciements

Ce travail de thèse a été effectué de novembre 2000 à juillet 2004 sous la direction du Professeur Jean-Paul TILLEMENT et je tiens à remercier par ces quelques lignes tous ceux qui ont contribué à la réussite de ce travail.

J’aimerai exprimer ma profonde reconnaissance au Professeur Jean-Paul TILLEMENT qui, en m’accueillant dans son laboratoire, m’a permis de réaliser ce travail. Je lui suis particulièrement reconnaissante d’avoir accepté d’être mon Directeur de thèse. Tout au long de ces années, son intérêt pour mon travail, sa confiance et son enthousiasme ont été essentiels.

Mes sincères remerciements au Docteur Didier MORIN, qui a su me faire partager ses connaissances immenses sur la mitochondrie et son expérience infinie de la recherche scientifique. Qu’il soit particulièrement remercié pour sa gentillesse, sa disponibilité, sa confiance et son intérêt pour mon travail. Il a été, au cours de ma thèse, un soutien indispensable.

Je remercie aussi le Professeur Serge LABIDALLE, qui a accepté, avec beaucoup de bienveillance, de collaborer à ce projet. Merci pour sa gentillesse, son accueil chaleureux au Laboratoire Synthé-Pharma (Toulouse) et ses nombreux et précieux conseils en chimie organique et analytique. Je garde un excellent souvenir de mon passage au sein de son Laboratoire.

Je remercie également le Professeur Bernard TESTA et le Docteur Philippe DIOLEZ, qui ont accepté, avec beaucoup de bienveillance, de juger ce travail et de me faire part de leurs précieux conseils.

Je voudrais également remercier le Docteur Pierre-Alain CARRUPT pour sa disponibilité et les expériences de biophysique réalisées par son équipe du Laboratoire de Chimie Thérapeutique (Genève).
Je remercie également le Professeur Alain BERDEAUX pour son soutien et pour avoir accepté d’être Président du Jury.

Merci à Papy et Mamy.

Merci à mon frère.

Merci à mes parents.
Sommaire

LISTE DES ABBREVIATIONS : ... 7

INTRODUCTION .. 9

GENERALITES .. 11

PREMIERE PARTIE : LES MITOCHONDRIES .. 11

 1 GENERALITES ... 11
 1.1 PRESENTATION .. 11
 1.2 PRINCIPALES FONCTIONS .. 11
 1.2.1 SYNTHESE D’ARN ET DE PROTEINES ... 11
 1.2.2 PRODUCTION D’ENERGIE .. 12
 1.2.3 LA GENERATION DE RADICAUX LIBRES OXYGENES (RLO) .. 17
 1.2.4 LA PRODUCTION DE CHALEUR .. 22
 1.2.5 LE STOCKAGE DU Ca2+ .. 22
 2 LA TRANSITION DE PERMEABILITE MITOCHONDRIALE (TPM) ... 23
 2.1 LA TPM EST CAUSEE PAR L’OUVERTURE D’UN POIRE PROTEIQUE (PTP) ... 23
 2.2 STRUCTURE DU PTP .. 24
 2.2.1 LE MODELE DU TRANSPORTEUR ADP/ATP ... 24
 2.2.2 LE MODELE DU COMPLEXE MULTI-PROTEIQUE ... 26
 2.3 LA REGULATION DU PTP .. 28
 2.3.1 OUVERTURE DU PTP ... 28
 2.3.2 INHIBITION DE L’OUVERTURE DU PTP .. 29
 2.4 CONSEQUENCES DE L’OUVERTURE DU PTP ... 30
 2.4.1 ROLES PHYSIOLOGIQUES POTENTIELS .. 30
 2.4.2 L’IMPLICATION DU PTP DANS LA NECROSE ET L’APOPTOSE ... 31

DEUXIEME PARTIE : LA CURCUMINE .. 34

 1 PRESENTATION .. 34

 2 PRINCIPALES PROPRIETES DE LA CURCUMINE .. 35
 2.1 ACTIVITES ANTI-INFLAMMATOIRES .. 35
 2.2 ACTIVITES ANTI-OXYDANTES .. 35
 2.3 ACTIVITES ANTI-TUMORALES ... 36
 2.4 RELATIONS STRUCTURE-FONCTION ... 37

OBJECTIFS DE LA THESE ... 40

MATERIELS ET METHODES ... 42

PREMIERE PARTIE : CHIMIE .. 42

 1 SYNTHESE DE DERIVES DE LA CURCUMINE ... 42
 1.1 SYNTHESE DES MOLECULES BETA-DICETONIQUES ... 42
 1.1.1 PROTOCOLE ... 42
1.1.2 MOLECULES SYNTHETISEES ... 43
1.2 SYNTHESE DES MOLECULES DE TYPEARYLETHYLIDENYL-2,6-CYCLOHEXANONE 48
1.2.1 PROTOCOLE ... 48
1.2.2 MOLECULES SYNTHETISEES ... 48

2 TECHNIQUES DE PURIFICATION DES PRODUITS DE SYNTHESE 52
2.1 LA RECRISTALLISATION .. 52
2.2 LA CHROMATOGRAPHIE SUR COLONNE «FLASH» ... 52

3 VERIFICATION DE LA PURETE DES PRODUITS ... 53
3.1 MESURE DU POINT DE FUSION ... 53
3.2 RESONNANCE MAGNETIQUE NUCLEAIRE DU PROTON 53
3.3 HPLC (CHROMATOGRAPHIE LIQUIDE HAUTE PERFORMANCE) EN PHASE INVERSE 53
3.4 LA CHROMATOGRAPHIE SUR COUCHE MINCE ... 54
3.5 MICROANALYSE OU ANALYSE CENTESIMALE ... 54

4 DERIVES ISSUS DU METABOLISME DE LA CURCUMINE .. 57
4.1 LA VANILLINE .. 57
4.2 L’ACIDE FERULIQUE .. 57
4.3 L’ALDEHYDE FERULIQUE .. 58

DEUXIEME PARTIE : BIOLOGIE ... 59
1 MATERIEL ... 59
1.1 ANIMAUX ET PRODUITS BIOLOGIQUES .. 59
1.2 PRODUITS CHIMIQUES ... 59
1.3 SOLVANTS, ACIDES, BASES ... 60
1.4 TAMPONS UTILISES ... 61
1.4.1 TAMPONS UTILISES AVEC LES MITOCHONDRIES DE FOIE 61
1.4.2 TAMPONS UTILISES AVEC LES MITOCHONDRIES DE COEUR 61
1.4.3 TAMPONS UTILISES POUR LE WESTERN-BLOT 61

2 TRAITEMENT DES ANIMAUX .. 62
3 ISOLEMENTS DE MITOCHONDRIES ... 62
3.1 MITOCHONDRIES DE FOIE .. 62
3.2 MITOCHONDRIES DE COEUR ... 63

4 MISE EN EVIDENCE DE L’OUVERTURE DU PTP .. 63
4.1 GONFLEMENT MITOCHONDRIAL ... 63
4.2 LIBERATION DU CYTOCHROME C ... 65

5 MESURE DES PARAMETRES FONCTIONNELS MITOCHONDRIAUX 66
5.1 MESURE DU POTENTIEL DE MEMBRANE (ΔΨ) .. 66
5.2 MESURE DE LA CONSOMMATION D’OXYGENE .. 66
5.2.1 PRINCIPE DE LA TECHNIQUE .. 66
5.2.2 CONSOMMATION D’OXYGENE PAR LES MITOCHONDRIES 67
5.2.3 MESURE DES PARAMETRES RESPIRATOIRES ... 67
5.3 MESURE DE L’ACTIVITE DU COMPLEXE III DE LA CHAINE RESPIRATOIRE 68
5.4 MESURE DU FLUX CALCIQUE .. 68
5.5 MESURES D’OXYDO-REDUCTION .. 69
5.5.1 MESURE DE LA PRODUCTION DE O₂* .. 69
5.5.2 MESURE DE LA PRODUCTION DE H₂O₂ ... 69
5.5.3 MESURE DE LA REDUCTION DE Fe³⁺ EN Fe²⁺ .. 70
5.5.4 MESURE DE LA PEROXYDATION DES LIPIDES .. 70
5.5.5 MESURE DE L'OXYDATION DES THIOLS .. 71
5.5.6 MESURE DE L'OXYDATION DU NAD(P)H .. 71
5.6 DETERMINATION DE LA CONCENTRATION EN GSH 72

6 MESURE DU POUVOIR ANTI-OXYDANT D'UN PHENOL 73

RESULTATS ..

LES EFFETS DE LA CURCUMINE SUR LES MITOCHONDRIES 76

1 LES EFFETS DE LA CURCUMINE SUR LA PHOSPHORYLATION OXYDATIVE ET LE POTENTIEL DE MEMBRANE (Δψ). ... 76
2 LA CURCUMINE INDUIT L'OUVERTURE DU PTP .. 79
3 LES EFFETS ANTI- ET PRO-OXYDANTS DE LA CURCUMINE 87

EFFETS DES DERIVES DE LA CURCUMINE SUR LES MITOCHONDRIES 98

1 CERTAINS DERIVES INDUISENT L'OUVERTURE DU PTP 98
2 LES PROPRIETES PRO- ET ANTI-OXYDANTES DES DERIVES 101
3 EFFETS DES DERIVES Cu03, Cu12 et Cy12 ... 108

DISCUSSION ..

REFERENCES ...

- 6 -
Liste des abréviations :

<table>
<thead>
<tr>
<th>Abbréviation</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apaf-1</td>
<td>Protease activating factor 1</td>
</tr>
<tr>
<td>CCCP</td>
<td>Carbonyl cyanide m-chlorophénylhydrazone</td>
</tr>
<tr>
<td>CPD</td>
<td>Cyclophiline D</td>
</tr>
<tr>
<td>CR</td>
<td>Contrôle respiratoire</td>
</tr>
<tr>
<td>CsA</td>
<td>Cyclosporine A</td>
</tr>
<tr>
<td>Δψ</td>
<td>Potentiel de membrane mitochondrial</td>
</tr>
<tr>
<td>DPPH*</td>
<td>radical N-diphényl-N’-picrylhydrazinyle</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothréitol</td>
</tr>
<tr>
<td>GpX</td>
<td>Glutathion peroxydase</td>
</tr>
<tr>
<td>GR</td>
<td>Glutathion réductase</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathion réduit</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>Peroxyde d’hydrogène</td>
</tr>
<tr>
<td>HO*</td>
<td>Radical hydroxyle</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>IAP</td>
<td>Inhibitor of apoptosis proteins</td>
</tr>
<tr>
<td>MBM</td>
<td>Monobromobimane</td>
</tr>
<tr>
<td>MDA</td>
<td>Malondialdéhyde</td>
</tr>
<tr>
<td>MME</td>
<td>Membrane mitochondriale externe</td>
</tr>
<tr>
<td>MMI</td>
<td>Membrane mitochondriale interne</td>
</tr>
<tr>
<td>NEM</td>
<td>N-éthylmaléimide</td>
</tr>
<tr>
<td>O₂*</td>
<td>Anion superoxyde</td>
</tr>
<tr>
<td>Pi</td>
<td>Phosphate inorganique</td>
</tr>
<tr>
<td>PTP</td>
<td>Permeability transition pore</td>
</tr>
<tr>
<td>RLO</td>
<td>Radicaux libres oxygénés</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxyde dismutase</td>
</tr>
<tr>
<td>TBARS</td>
<td>Thiobarbituric acid reactive substances</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor necrosis factor</td>
</tr>
<tr>
<td>TPM</td>
<td>Transition de perméabilité mitochondriale</td>
</tr>
<tr>
<td>TPX</td>
<td>Thiorédoxine peroxydase</td>
</tr>
<tr>
<td>TR</td>
<td>Thiorédoxine réductase</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>TSH</td>
<td>Thiorédoxine réduite</td>
</tr>
<tr>
<td>RMN1H</td>
<td>Résonance magnétique nucléaire du proton</td>
</tr>
<tr>
<td>Smac</td>
<td>Second mitochondrial activator of caspase</td>
</tr>
<tr>
<td>UCP</td>
<td>Uncoupling protein</td>
</tr>
<tr>
<td>VDAC</td>
<td>Voltage dependent anion channel</td>
</tr>
</tbody>
</table>
Introduction

Identifiées en 1897 grâce au microscope optique, les mitochondries ne furent isolées pour la première fois qu’à la fin des années 1940. Jusqu’au terme des années 1980, la mitochondrie, dont on connaissait le rôle essentiel dans le métabolisme énergétique cellulaire, n’attirait guère l’attention des chercheurs. Mais depuis une quinzaine d’années, grâce aux nouveaux outils de la biologie et de la génétique moléculaires, des anomalies de l’ADN mitochondrial furent découvertes en clinique humaine et on s’aperçut que la chaîne respiratoire mitochondriale était non seulement capable de synthétiser de l’ATP mais constituait également un des sièges de production des radicaux libres oxygénés. Ainsi on découvrit que la mitochondrie était impliquée dans la mort cellulaire par apoptose ou nécrose et jouait un rôle clé dans les dommages causés par le vieillissement ou le phénomène d’ischémie-reperfusion, dans certaines maladies musculaires évolutives et dans plusieurs maladies neurodégénératives comme, par exemple, la maladie d’Alzheimer ou celle de Parkinson. Les mitochondries sont donc considérées, aujourd’hui, comme une cible pharmacologique intéressante offrant de nouvelles possibilités thérapeutiques.

La curcumine (1,7-bis(4-hydroxy-3-méthoxyphényl)-1,6-heptadiène-3,5-dione), issue de Curcuma longa L., est une molécule présentant un très grand nombre de propriétés pharmacologiques. Elle est notamment considérée comme une substance anti-inflammatoire, anti-oxydante et anti-tumorale et régule certains processus impliquant la mitochondrie tels que la génération des radicaux libres oxygénés et la mort cellulaire.

L’objectif de ce travail sera donc de tester les effets mitochondriaux de la curcumine, de comprendre son mécanisme d’action et de déterminer les fonctions chimiques impliquées. Pour cela, différents dérivés de la curcumine ont été synthétisés et leurs effets testés sur les fonctions mitochondriales.
GENERALITES
1 GENERALITÉS

1.1 PRESENTATION

Les mitochondries sont des organites caractéristiques des cellules eucaryotes. Chaque cellule de l'organisme contient entre 500 et 2000 mitochondries qui ont la forme de petits cylindres rigides et allongés, de 0,5 à 1 µM de diamètre.

Les mitochondries possèdent deux membranes hautement spécialisées, une membrane externe (MME) et une membrane interne (MMI) qui délimitent deux compartiments mitochondriaux séparés : la matrice, interne, et l'espace intermembranaire. La MME contient une protéine de transport, la porine, qui forme des canaux la rendant perméable aux molécules de poids moléculaire inférieur à 5000 daltons. De son côté, la MMI est imperméable et contient un phospholipide particulier : la cardiolipine. La matrice, quant à elle, est le siège de réactions du métabolisme telles que le cycle de Krebs et la β-oxydation (Clostre, 2001).

1.2 PRINCIPALES FONCTIONS

1.2.1 SYNTHESE D’ARN ET DE PROTEINES

Les mitochondries contiennent 0,1 à 0,2 % de l’ADN d’une cellule eucaryote. Chaque mitochondrie possède environ 4 à 6 répliques de son ADN. Cette molécule de 16,5 kilobases est composée d’un double brin dont la structure diffère de l’ADN du noyau car il est circulaire et dépourvu d’histone. L’ADN mitochondrial code pour les ARN ribosomaux mitochondriaux, pour la plupart des ARN de transfert mitochondriaux et pour plusieurs sous-unités appartenant à des protéines de la chaîne respiratoire et du système de phosphorylation.
oxydative (comme des sous-unités de l’ATP ase F1, du cytochrome a, du cytochrome a₃ et du cytochrome b) (Clostre, 2001).

1.2.2 PRODUCTION D’ENERGIE

(Heales et al., 2002)

Première étape : l’oxydation des combustibles cellulaires

Les combustibles cellulaires sont les sucres, les acides gras et les protéines. Leur oxydation est réalisée en plusieurs étapes. Lors de la glycolyse, le glucose est d’abord transformé en pyruvate qui pénètre dans la mitochondrie où la pyruvate déshydrogénase le transforme en acétyl-CoA. De son côté, le métabolisme des acides gras conduit à la formation d’acyl-CoA (activation) qui entre dans la mitochondrie et est, à son tour, transformé en acétyl-CoA (β-oxidation). Les acides aminés des protéines sont aussi dégradés et génèrent différents métabolites qui sont oxydés, comme les molécules d’acétyl-CoA synthétisées, en molécules de CO₂ par le cycle de Krebs.

Certaines étapes de ces différents processus provoquent la synthèse d’une petite quantité d’énergie sous forme d’ATP ou génèrent la formation de substrats qui seront oxydés par la chaîne respiratoire et qui fourniront, alors, la source majeure d’énergie.

Deuxième étape : le transfert d’électron par la chaîne respiratoire

La figure 1 schématise la chaîne respiratoire et le processus de phosphorylation oxydative.

La chaîne respiratoire est constituée de différentes protéines regroupées en 4 complexes enzymatiques localisés dans la MMI au niveau des crêtes. Ces complexes sont spécialisés dans les réactions d’oxydo-réduction. Comme l’indique la figure 1, ils permettent le transport, vers l’oxygène moléculaire, des électrons issus de l’oxydation du NADH et du succinate (générés par le cycle de Krebs). Ainsi, le NADH est oxydé par le complexe I (NADH-ubiquinone oxydoréductase) et le succinate par le complexe II (succinate-ubiquinone oxydoréductase), deux complexes qui contiennent des protéines « fer-soufre » et des flavoprotéines (protéines contenant des nucléotides de type FAD (flavine adénine nucléotide) ou FMN (flavine mononucléotide)).
Ces protéines subissent des réactions d’oxydo-réduction et permettent le transfert des électrons jusqu’à une molécule liposoluble et mobile, l’ubiquinone.

Le complexe III (appelé ubiquinol-cytochrome c oxydoréductase), composé d’une protéine « fer-soufre » et des cytochromes b et C₁, induit le transfert des électrons de l’ubiquinol (forme réduite de l’ubiquinone) au cytochrome C localisé dans l’espace intermembranaire. L’ubiquinol libère ses deux électrons l’un après l’autre générant l’ubisemiquinone qui ne possède qu’un électron.

Une fois réduit, le cytochrome C transporte les électrons jusqu’au complexe IV (cytochrome C oxydase) où ils sont transférés à l’oxygène moléculaire contenu dans la matrice mitochondriale par l’intermédiaire de sites cuivriques (Cuₐ et Cuₐ) et des cytochromes a et a₃. L’oxygène est alors réduit en H₂O suivant la réaction :

\[
O₂ + 4 \, e^- + 4 \, H^+ \rightarrow 2 \, H₂O
\]

Le transfert d’électrons réalisé au niveau des complexes I, III et IV est accompagné d’une expulsion de protons.
Figure 1 : Schéma de la chaîne respiratoire et du processus de phosphorylation oxydative (d’après Heales et al., 2002).

Troisième étape : la phosphorylation oxydative

Le transport des protons de la matrice vers l’espace intermembranaire aboutit à la création d’un potentiel électrochimique. En effet, la translocation des protons provoque à la fois une acidification de l’espace intermembranaire (engendrant une différence de pH à travers la MMI d’environ 1,4) et la création d’un potentiel de membrane ($\Delta \psi$) entraînant une différence de potentiel de l’ordre de 150 mV. Ainsi créés, le gradient de pH tend à ramener les protons vers la matrice en expulsant des ions OH$^{-}$ et le potentiel de membrane à attirer les ions chargés positivement en expulsant les ions négatifs. La résultante de ces deux forces est dite force protomotrice et c’est cette dernière qui permet la production d’énergie. En effet, les protons attirés vers la matrice traversent la MMI grâce au complexe V ou ATP synthase. Ce complexe est constitué de deux sous-unités F_0 et F_1. F_0 ancre le complexe à la membrane et forme un pore perméable aux protons. F_1 contient le site catalytique qui est activé par le passage des protons et provoque la synthèse de l’ATP par phosphorylation de l’ADP selon la réaction :

$$\text{ADP} + \text{Pi} \rightarrow \text{ATP}$$

L’ATP est alors exporté hors de la mitochondrie par un échangeur ADP/ATP qui permet à l’ADP d’entrer dans la matrice pour servir de substrat à l’ATP synthase et à l’ATP d’être expulsé pour être utilisé par la cellule.

La découverte d’altérations cellulaires associées à l’inhibition du fonctionnement de la chaîne respiratoire a permis de mettre en évidence des molécules inhibitrices spécifiques de certains complexes (Browne et Beal, 2002). Les principales molécules sont rassemblées sur le tableau 1.
Tableau 1 : Quelques inhibiteurs des complexes de la chaîne respiratoire

<table>
<thead>
<tr>
<th>MOLECULES</th>
<th>COMPLEXE INHIBE</th>
<th>MODE D’ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roténone</td>
<td>I</td>
<td>Empêche le transfert de l’électron vers l'ubiquinone (1)</td>
</tr>
<tr>
<td>Acide 3-nitropropionique</td>
<td>II</td>
<td>Inhibe irréversiblement l’activité de la succinate déshydrogénase (1)</td>
</tr>
<tr>
<td>Malonate</td>
<td>II</td>
<td>Inhibe réversiblement l’activité de la succinate déshydrogénase (1)</td>
</tr>
<tr>
<td>Antimycine A</td>
<td>III</td>
<td>Bloque l’oxydation du cytochrome b (2)</td>
</tr>
<tr>
<td>Myxothiazol</td>
<td>III</td>
<td>Bloque l’oxydation de l’ubiquinol (2)</td>
</tr>
<tr>
<td>Cyanure</td>
<td>IV</td>
<td>Inhibe le cytochrome a₃ (2)</td>
</tr>
</tbody>
</table>

(1) Browne et Beal, 2002 (2) Wallace et Starkov, 2000
1.2.3 LA GENERATION DE RADICAUX LIBRES OXYGENES (RLO)

Le fonctionnement de la chaîne respiratoire provoque la génération de RLO qui sont de puissants oxydants responsables de nombreuses altérations cellulaires lorsqu’ils sont en excès. Ces espèces chimiques indépendantes contiennent un ou plusieurs électron(s) isolé(s) (Halliwell, 1994). La figure 2 schématise les processus de génération des RLO dans la mitochondrie ainsi que les systèmes de défense mis en place par la mitochondrie pour les éliminer.

Les principaux RLO synthétisés dans la mitochondrie

Dans les conditions physiologiques, on pense que 1 à 3% de l’oxygène contenu dans une mitochondrie est réduit en anion superoxyde (O$_2^-$) (Halliwell, 1994). O$_2^-$ résulte de la réduction d’une molécule d’O$_2$ par un électron (Halliwell et Gutteridge, 1999). La source majeure d’O$_2^-$ dans les mitochondries est la chaîne respiratoire (Figure 2, (1)) et plus particulièrement l’ubiquinone, le cytochrome b et les flavoprotéines qui constituent les complexes I et III (Skulachev, 1996 ; Turrens, 1997 ; Wallace et Starkov, 2000). En effet, lorsque ces composés sont maintenus à l’état réduit (en présence de bloqueurs du transfert d’électrons ou lors d’un ralentissement du fonctionnement de la chaîne respiratoire), ils peuvent interagir avec des molécules d’O$_2$ qui se déplacent librement et de manière aléatoire dans la matrice. Ce phénomène génère la formation d’O$_2^-$ et se produit particulièrement lorsque la cytochrome C oxydase est saturée.

O$_2^-$ peut être très réactif mais sa durée de vie en solution aqueuse est courte. Très rapidement il subit une réaction de dismutation (Figure 2, (2)) aboutissant à la production de peroxyde d’hydrogène (H$_2$O$_2$) (Gutteridge, 1994) :

$$2O_2^- + 2H^+ \rightarrow H_2O_2 + O_2$$
Figure 2 : Les processus de génération des RLO dans la mitochondrie ainsi que les systèmes de défense (d’après Halliwell et Gutteridge, 1999).

Cette réaction est catalysée par la superoxyde dismutase (SOD) dont la forme mitochondriale possède, sur son site actif, un ion manganèse (MnSOD) alors que la forme cytosolique contient un ion cuivreux et un ion zinc (CuZnSOD) (Halliwell, 1994 ; Locigno et Castronovo, 2001). H₂O₂, qui diffuse facilement à l’intérieur et entre les cellules, est peu réactif, sauf si sa concentration devient supérieure à 10 µM. Dans ce cas, il oxyde certaines enzymes de la glycolyse et dégrade le cytochrome C (Halliwell et Gutteridge, 1999).

H₂O₂ n’appartient pas à la famille des RLO mais il peut générer la formation du radical hydroxyle (HO•) (Gutteridge, 1994 ; Halliwell, 1994 ; Halliwell et Gutteridge, 1999) qui est considéré comme le plus réactif des radicaux connus. En effet, il réagit très rapidement avec les protéines, l’ADN et les lipides. La formation de HO• à partir de H₂O₂ peut être réalisée selon deux réactions :

- la réaction de Fenton (Figure 2, (3)) : Fe²⁺ + H₂O₂ → Fe³⁺ + HO• + HO⁻
- la réaction d’Haber-Weiss : O₂•⁻ + H₂O₂ → O₂ + HO• + HO⁻

D’autres RLO, qui ne sont pas représentés sur la figure 2, sont produits par la mitochondrie. Il s’agit des radicaux « central » et peroxyl qui sont obtenus par réaction du radical HO• avec une molécule d’acide gras :

-CH₂⁻ + HO• → H₂O + -CH⁻ = radical “central”
-C•H⁻ + O₂ → -COO•⁻ = radical peroxyle

Si le radical peroxyle capte l’atome d’hydrogène d’une molécule voisine, il se transforme en hydroperoxyde. La lipoperoxidation se propage alors de lipides en lipides (Halliwell, 1994).

Les systèmes de défense mis en place dans la mitochondrie

La mitochondrie possède de nombreux systèmes de défense face aux RLO.

Certaines protéines impliquées dans la chaîne respiratoire (comme les protéines « fer–soufre » et les cytochromes), diminuent la génération de RLO en séquestrant les ions métalliques (Figure 2, (4)) bloquant ainsi la réaction de Fenton et les phénomènes d’auto-oxydation (Halliwell, 1994).

La mitochondrie possède également des molécules anti-oxydantes naturelles de faible masse moléculaire : le glutathion et la thiorédoxine (Figure 2, (5) et (6)).

Le glutathion réduit (GSH) est un tripeptide : γ-glutamyl-cysteinyl-glycine dont la synthèse nécessite de l’énergie et utilise les acides aminés provenant soit du métabolisme des protéines soit du recyclage du GSH lui-même. La concentration moyenne de GSH dans une cellule est de l’ordre de 0,1 à 10 mM dont 10 % sont contenus dans la mitochondrie (Shan et al., 1993 ; Fernandez-Checa et al., 1997). Cette dernière, ne possède pas les enzymes nécessaires à la biosynthèse du GSH et l’import du cytosol par transport actif utilisant un transporteur dont la nature est encore inconnue (Griffith et Meister, 1985 ; Fernandez-Checa et al., 1997). Le groupement thiol du résidu cystéine confère au GSH un puissant pouvoir antioxydant car il peut réduire directement certains RLO comme le radical HO·. Il est également le substrat de la glutathion peroxydase (enzyme décrite au paragraphe suivant) (Cnubben et al., 2001). Le rôle indispensable du GSH dans la survie cellulaire a clairement été mis en évidence par des expériences où l’on induit un stress oxydatif sur des cellules ayant subi une dépletion en GSH cellulaire ou mitochondrial (Shan et al., 1993 ; Fernandez-Checa et al., 1997).

La thiorédoxine réduite (TSH) est une autre molécule anti-oxydante qui a récemment été mise en évidence dans la matrice mitochondriale (Lee et al., 1999). C’est une protéine dont le site actif contient deux groupements thiols adjacents qui permettent de réduire les ponts disulfures selon la succession de réactions suivantes (Gaté et al., 1999 ; Lee et al. 1999) :

\[
\begin{align*}
\text{Thiorédoxine-(SH)}_2 + \text{protéine-S}_2 & \longrightarrow \text{thiorédoxine-S}_2 + \text{protéine-(SH)}_2 \\
\text{thiorédoxine-S}_2 + \text{TR-(SH)}_2 & \longrightarrow \text{thiorédoxine-(SH)}_2 + \text{TR-S}_2 \\
\text{TR-S}_2 + \text{NAD(P)H,H}^+ & \longrightarrow \text{TR-(SH)}_2 + \text{NADP}^+
\end{align*}
\]

où TR est la thiorédoxine réductase.

Un autre mécanisme de lutte face au stress oxydatif est la transformation enzymatique de certains RLO en composants moins toxiques. Ainsi la catalase, essentiellement localisée dans...
les peroxysomes, existe aussi en faible quantité dans certaines mitochondries (Turrens, 1997) et induit la dismutation du H$_2$O$_2$ en H$_2$O (Figure 2, (7)) (Halliwell, 1994 ; Locigno et Castronovo, 2001). La glutathion peroxydase (GPx), également présente en faible proportion dans la matrice mitochondriale, permet de réduire les peroxydes (Cnubben et al., 2001) et de convertir les molécules de H$_2$O$_2$ en H$_2$O (Figure 2, (8)) (Halliwell, 1994, Locigno et Castronovo, 2001). Cette enzyme présente la particularité de posséder une sélénocystéine, c’est à dire une cystéine dont l’atome de soufre est remplacé par un atome de sélénium. La réaction réalisée par la GPx implique l’oxydation de deux molécules de GSH qui sont réduites par une flavoprotéine membranaire appelée glutathion réductase (Figure 2, (9)). Cette réaction entraîne, à son tour, l’oxydation du NADPH qui est restauré (Figure 2, (10)) grâce à la NADP transhydrogénase, une protéine membranaire activée par la force protomotrice (Verseci, 1993 ; Kowaltowski et al., 2001).

Tout comme le GSH, la TSH peut également servir de co-facteur dans ces réactions. Les enzymes impliquées sont alors la thiorédoxine peroxydase (TPx) et la thiorédoxine réductase (TR) (Kowaltowski et al., 2001).

Lorsque l’ensemble de ces systèmes de défense se révèle inefficace, un autre mécanisme (qui n’est pas indiqué dans la figure 2) pourrait se déclencher : il s’agit du découplage partiel. Ce phénomène est hypothétique car il nécessiterait la présence de molécules découplantes endogènes, capables de transporter les protons de l’espace intermembranaire vers la matrice mitochondriale. Plusieurs observations suggèrent qu’un découplage naturel réversible pourrait être réalisé par les hormones thyroïdiennes. En effet, les mitochondries issues de rats hyperthyroïdiens semblent soumises en permanence à un agent découplant et les hormones sexuelles mâles et la progestérone semblent capables de réverser le découplage médié par les hormones thyroïdiennes (Starkov, Bloch et al., 1997 ; Starkov, Simonyan et al. ; 1997). Ce processus de découplage constituerait un moyen de défense face aux oxydants. Il permettrait à la fois une consommation rapide du substrat de la chaîne respiratoire et de l’oxygène moléculaire et une baisse du niveau de réduction des intermédiaires de la chaîne respiratoire (Skulachev, 1996). Bien qu’inhibant la production d’ATP, le découplage partiel serait bénéfique (Starkov, 1997).
1.2.4 LA PRODUCTION DE CHALEUR

La dissipation de l’énergie sous forme de chaleur est due au transport des protons de l’espace intermembranaire vers la matrice grâce à des protéines découplantes dimérisées appelées UCP (pour « uncoupling proteins ») et localisées dans la MMI de nombreux types de cellules (Ricquier et Bouillaud, 1998). Dans les conditions physiologiques, ce phénomène ne concerne qu’une faible proportion de protons. En effet, la majorité d’entre eux est préférentiellement utilisée par l’ATP synthase.

1.2.5 LE STOCKAGE DU Ca$$^{++}$$

Le réticulum endoplasmique est connu pour jouer un rôle majeur dans l’homéostasie calcique de la cellule (Vercesi, 1993) mais la mitochondrie participe également à ce processus (Richter, 1996). Dans les conditions physiologiques, la concentration de Ca$$^{++}$$ dans le cytosol est d’environ 0,5-1 µM alors qu’elle est de l’ordre de 0,1-2 µM dans les mitochondries. Le cycle du Ca$$^{++}$$ à travers la membrane mitochondriale implique plusieurs transporteurs. L’entrée de Ca$$^{++}$$ dans la matrice est contrôlée par un canal voltage-dépendant, spécifiquement inhibé par le rouge de ruthénium, et appelé « uniporteur calcique » alors que sa sortie s’effectue en échangeant le Ca$$^{++}$$ avec le Na$$^{+}$$ (dans les tissus excitable) ou avec les protons (dans les tissus non excitable) (Bernardi, 1999).

La sortie de Ca$$^{++}$$ mitochondriale peut également se dérouler lors d’une transition de perméabilité de la MMI due à l’ouverture réversible d’un pore sensible à un excès de Ca$$^{++}$$ matriciel (Ichas et al., 1997). L’étude de cette transition de perméabilité fait l’objet du paragraphe suivant.
LA TRANSITION DE PERMEABILITE MITOCHONDRIALE (TPM)

L’existence d’une augmentation de perméabilité de la MMI a été mise en évidence, dans les années 70. En effet, des mitochondries isolées surchargées en Ca++ perdaient leur potentiel de membrane, gonflaient, libéraient dans le milieu les composants matriciels et hydrolysaient l’ATP au lieu de le synthétiser. Ce processus était réversible car après l'augmentation de la perméabilité de la MMI, la mitochondrie pouvait retrouver son volume normal, restaurer son potentiel de membrane et de nouveau synthétiser de l’ATP (Haworth et Hunter, 1979; Crompton et al., 1987).

2.1 LA TPM EST CAUSEE PAR L’OUVERTURE D’UN PORE PROTEIQUE (PTP)

Plusieurs hypothèses furent évoquées pour expliquer l'augmentation de perméabilité de la MMI. L’une d’elle impliquait une accumulation de lysophospholipides, mais elle fut invalidée du fait de la lenteur du processus et de l'absence d'effet inhibiteur de la cyclosporine A (qui est un inhibiteur de la TPM) sur la phospholipase A2. L’hypothèse d'un pore protéique fut alors avancée et il fut proposé que la TPM était causée par un pore protéique non spécifique, capable de s'ouvrir et de se fermer rapidement sans induire de dommages irréversibles (Zoratti et Szabo 1995 ; Bernardi, 1999). Les caractéristiques de ce pore ont ensuite été déterminées : il s'agit d'un pore permettant le passage de molécules dont le poids moléculaire est inférieur ou égal à 1500 Da, ce qui laisse supposer que son diamètre est de l’ordre de 2 à 3 nm (Crompton et Costi, 1990). Il fut appelé PTP pour « Permeability Transition Pore ».

Parallèlement à ces découvertes, des expériences d’électrophysiologie (réalisées avec la technique de Patch-Clamp), révélèrent la présence, aux sites de contact des membranes mitochondriales interne et externe, d’un canal régulé de la même manière que le PTP et possédant plusieurs conductances allant de 20 pS à 1,3 nS (Zoratti et Szabo, 1995). A faibles conductances, le canal semblait sélectif alors qu’à forte conductance il ne l’était plus. Ce canal fut dénommé « Mitochondrial megachannel » mais fut rapidement considéré comme étant identique au PTP mis en évidence dans les expériences de biochimie.

L’ensemble de ces résultats permet de supposer que l’augmentation de perméabilité de la MMI est due à l’ouverture d’un pore protéique (Zoratti et Szabo, 1995 ; Bernardi, 1996 ;
Crompton, 1999). Cependant, la nature de ce pore est encore inconnue à ce jour. De nombreuses études proposent, du fait de la complexité de sa régulation, qu’il résulterait de l’interaction entre différentes protéines. Plusieurs modèles ont été évoqués pour expliquer son fonctionnement (Zoratti et Szabo, 1995 ; Crompton, 1999) mais deux hypothèses prédominent :

- celle de l’équipe du Pr. Halestrap qui pense que le pore est uniquement constitué du transporteur ADP/ATP (cf paragraphe 2.2.1)
- celle d’autres équipes présentant le pore comme un complexe multiprotéique (cf paragraphe 2.2.2)

2.2 STRUCTURE DU PTP

2.2.1 LE MODELE DU TRANSPORTEUR ADP/ATP

Le transporteur ADP/ATP est un pore qui permet l’échange de l’ADP et de l’ATP à travers la MMI. Il possède deux conformations : une conformation « C » (le site fixant les nucléotides est orienté vers le cytosol) et une conformation « M » (le site de fixation est localisé sur la face matricielle) (Klingenberg, 1993). L’hypothèse selon laquelle ce pore constituerait le PTP est basée sur plusieurs observations : les ligands du transporteur ADP/ATP régulent l’ouverture du PTP (Halestrap et Davidson, 1990 ; Mc Stay et al., 2002) et la cyclophiline D (CPD), qui fixe la cyclosporine A (CsA), interagit avec le transporteur ADP/ATP (Woodfield et al., 1998).

Le modèle du transporteur ADP/ATP est basé sur l’hypothèse selon laquelle ce transporteur se transforme en pore non spécifique suite à une diminution du taux d’ADP et d’ATP, à la présence de Ca$^{++}$ et à la fixation de la CPD sur le transporteur. Le mécanisme proposé est présenté sur la figure 3.

La CPD se fixe au transporteur au niveau d’un résidu proline qui n’est accessible que lorsque le transporteur est en conformation « C ». Une fois fixée, la CPD devient active et son activité enzymatique cis-trans peptidyl-prolyl isomérase induit un changement de conformation du transporteur qui se transforme en un pore non-spécifique. La CsA empêche cette conversion en inhibant la liaison de la CPD au transporteur et/ou l’activité enzymatique de la CPD (Halestrap et David, 1990 ; Griffiths et Halestrap, 1991 ; Zoratti et Szabo, 1995 ; Woodfield et al., 1998 ; Mc Stay et al., 2002).
Figure 3 : Le modèle du transporteur ADP/ATP (d’après Griffiths et Halestrap, 1991)

En présence de Ca\(^{++}\) et de CPD et en absence d’ADP et d’ATP, le transporteur ADP/ATP devient un pore non spécifique.
Il fixe la CPD au niveau d’un résidu proline accessible uniquement lorsqu’il est en « conformation C ». La CPD devient active et induit, par son activité \textit{cis-trans} peptidyl-prolyl isomérase, un changement de conformation du transporteur qui devient un pore non spécifique. La CsA empêche cette conversion en inhibant la liaison de la CPD au transporteur et/ou l’activité enzymatique de la CPD.
CPD : cyclophiline D, CsA : Cyclosporine A, MMI : Membrane mitochondriale interne, P : proline.
2.2.2 LE MODELE DU COMPLEXE MULTI-PROTEIQUE

Ce modèle rallie plus d’auteurs que le modèle précédent.
La composition du complexe (Zoratti et Szabo, 1995 ; Crompton, 1999 ; Desagher et Martinou, 2000) n’est pas encore établi même si certaines protéines semblent être fortement impliquées telles que le transporteur ADP/ATP, le récepteur périphérique aux benzodiazepines (PBR) et le « Voltage-dependent anion channel » (VDAC), une porine mitochondriale dont le rôle est de transporter des solutés à travers la MME.
Le pore, proprement dit, serait constitué du transporteur ADP/ATP ainsi que du canal VDAC. L’interaction entre ces deux protéines serait favorisée au niveau des sites de contact entre la MMI et la MME et serait modulée par une protéine cytosolique : l’hexokinase et une protéine de l’espace intermembranaire : la créatine kinase (Zoratti et Szabo, 1995 ; Crompton, 1999).
Comme dans le modèle précédent, l’ouverture du PTP serait favorisée par l’interaction de la CPD avec le transporteur ADP/ATP (Bernardi, 1996 ; Crompton, 1999) et serait inhibée en présence de CsA (Crompton, 1999).
La structure du complexe protéique est présentée sur la figure 4.
Figure 4 : Le modèle multiprotéique du PTP (d’après Desagher et Martinou, 2000).

Quelque soit le modèle structural adopté, l’ouverture du PTP serait modulée par de nombreux composés.

2.3 LA REGULATION DU PTP

2.3.1 OUVERTURE DU PTP

Plusieurs auteurs ont décrit le Ca$^{++}$ comme un puissant inducteur de l’ouverture du PTP (Crompton et al., 1987 ; Szabo et al., 1992 ; Castilho et al., 1995 ; Kowaltowski et al., 1996). Son mode d’action n’est pas clairement établi mais Castilho et al., 1995 ont proposé que le Ca$^{++}$ induisait : (1) une augmentation de la production d’O$_2^\bullet$ par la chaîne respiratoire, (2) une accélération de la réaction de Fenton et (3) des changements de conformation qui rendaient plus accessibles les fonctions thiols de certaines protéines membranaires. Le Ca$^{++}$ seul, à fortes concentrations, est efficace mais la présence d’inducteurs accélère le processus.

L’inducteur le plus fréquemment utilisé expérimentalement est l’ion phosphate. Le mécanisme de cette induction n’est pas clairement établi mais plusieurs hypothèses, non exclusives, ont été avancées. Etant un acide faible, l’ion phosphate réduit l’alcalinisation de la matrice due à l’entrée de Ca$^{++}$ et aide au maintien d’un potentiel de membrane élevé permettant une plus grande accumulation de Ca$^{++}$ dans la mitochondrie. De plus, l’ion phosphate favorise la conversion de l’ADP en ATP (un moins bon inhibiteur du PTP, voir paragraphe suivant) et peut provoquer la déplétion de ces deux nucléotides par les échangeurs P$^\text{i}$/ATP-Mg$^{++}$ ou P$^\text{i}$/HADP$^{2-}$ (Zoratti et Szabo, 1995). Enfin, l’ion phosphate pourrait induire la production de RLO (Kowaltowski et al., 1996).

L’ouverture du PTP est également induite par une dépolarisation membranaire (Kowaltowski et al., 2001) ou par les ligands du transporteur ADP/ATP qui stabilisent sa conformation « C » (ex : atractylate, carboxyatractylate) (Halestrap et Davidson, 1990 ; Zoratti et Szabo, 1995 ; Bernardi, 1999 ; Crompton, 1999).

Les agents oxydants favorisent également l’ouverture du PTP. Certains entraînent l’oxydation du NAD(P)H ou du NADH (ex : oxaloacétate, acétoacétate, duroquinone) alors que d'autres sont des oxydants non spécifiques (ex : ménadione, tert-butylhydroperoxyde). Dans tous les cas, les espèces oxydées induisent la formation de ponts disulfures au sein de
protéines membranaires qui régulent l’ouverture du PTP (Petronilli et al., 1994 ; Zoratti et Szabo, 1995 ; Bernardi, 1996 ; Chernyak et Bernardi, 1996 ; Costantini et al., 1996 ; Kowaltowski et al., 2001;). Certains composés réagissent directement avec les fonctions thiols de ces protéines soit en provoquant leur oxydation (ex : acide bis(diméthylamide) azodicarboxylique, encore appelé diamine), soit en les complexant (ex : phénylarsine oxyde, anion arsénite ou N-éthylmaléimide (NEM) à fortes concentrations (> 50µM)).

2.3.2 INHIBITION DE L’OUVERTURE DU PTP

Plusieurs composés empêchent l'ouverture du PTP.

Parmi eux, la CsA qui se fixe aux cyclophilines, dont le rôle physiologique est la maturation des protéines (Crompton, 1999). Comme nous l’avons vu précédemment, la CsA inhibe, notamment, la fixation et/ou l'activité de la CPD, ce qui empêche l'ouverture du PTP (Griffiths et Halestrap, 1991; Crompton, 1999 ; Mc Stay et al., 2002).

L’ouverture du PTP est également inhibée par des molécules empêchant l’entrée de Ca++ dans la mitochondrie (ex : le rouge de ruthénium, l’EGTA (Castihlo et al., 1995) ou les découplateurs), les ligands du transporteur ADP/ATP qui stabilisent sa conformation « M » (ex : acide bongkrélique), l’ADP, l’ATP ou les substances entraînant des potentiels de membrane élevés (Zoratti et Szabo, 1995). De même, des anti-oxydants comme le dithiothréitol (DTT, qui réduit les groupes thiols oxydés) ou le monobromobimane (MBM, qui complexe les groupes thiols réduits) empêchent l’ouverture du PTP. Le NEM, qui est un inducteur à fortes concentrations, diminue l’oxydation des thiols lorsqu’il les complexe à faibles concentrations, ce qui inhibe également l'ouverture du PTP (Petronilli et al., 1994 ; Costantini et al., 1995 ; Bernardi, 1996 ; Chernyak et Bernardi, 1996 ; Costantini et al., 1996 ; Kowaltowski et al., 2001).

La probabilité d’ouverture du PTP diminue aussi avec le pH (à pH inférieur ou égal à 6,5, le PTP ne s'ouvre plus). Le rôle des protons n’est pas défini mais il semblerait qu’ils interagissent avec un ou plusieurs résidu(s) histidine de la face matricielle du PTP (Nicolli et al., 1993).

Les cations divalents, qui entrent, sans doute, en compétition avec le Ca++ (Szabo et al., 1992 ; Zoratti et Szabo, 1995) inhibent aussi l’ouverture du PTP.
Un modèle de régulation de l’ouverture du PTP, proposé par l’équipe de Bernardi (Petronilli et al., 1994 ; Bernardi, 1996 ; Chernyak et Bernardi, 1996 ; Costantini et al., 1996), ferait intervenir deux sites probablement localisés sur le transporteur ADP/ATP (Mc Stay et al., 2002). Le premier site, appelé « Site S », serait sensible à l’état d’oxydo-réduction du GSH et serait constitué de deux groupes thiols proches. Les composés qui réguleraient ce site auraient leurs effets inhibés par le NEM, le MBM et le DTT. Le deuxième site, appelé « Site P », serait régulé par l’état d’oxydo-réduction du NAD(P)H et serait constitué d’au moins un groupe thiol et peut-être d’un site de liaison au NAD(P)H. Il serait activé par des composés dont les effets seraient uniquement inhibés par le NEM. L’oxydation du GSH, du NAD(P)H ou des groupes thiols membranaires augmenterait la probabilité d’ouverture du PTP pour une valeur de potentiel ou une concentration de Ca²⁺ données.

2.4 CONSEQUENCES DE L’OUVERTURE DU PTP

2.4.1 ROLES PHYSIOLOGIQUES POTENTIELS

Plusieurs hypothèses ont été évoquées pour tenter de trouver une fonction physiologique au PTP.

Le PTP pourrait exercer un rôle dans le fonctionnement et le « nettoyage » de la mitochondrie car son ouverture réversible, à faibles conductances, permettrait de faire entrer dans la matrice les polypeptides synthétisés par les ribosomes cytosoliques et d’évacuer les métabolites indésirables et le Ca²⁺ en excès (Griffiths et Halestrap, 1991 ; Zoratti et Szabo, 1995 ; Lemasters et al., 1998 ; Bernardi, 1999). Cette expulsion des ions Ca²⁺ serait aussi à l’origine du phénomène appelé « Ca²⁺-induced Ca²⁺ release » qui correspond à la sortie du Ca²⁺ mitochondrial suite à la libération, mediée par l’inositol-triphosphate, du Ca²⁺ stocké dans le réticulum endoplasmique (Ichas et al., 1997). Ce processus permettrait donc d’amplifier le signal et d’augmenter la concentration de Ca²⁺ cytosolique. D’autre part, des résultats récents indiquent que l’ouverture réversible, à faibles conductances, du PTP pourrait jouer un rôle dans le processus de préconditionnement (Hausenloy et al., 2004).

L’ensemble de ces résultats ne permet pas, à ce jour, de statuer définitivement sur l’existence d’un ou de plusieurs rôles physiologiques du PTP mais ils renforcent fortement cette hypothèse.
2.4.2 L’IMPLICATION DU PTP DANS LA NECROSE ET L’APOPTOSE

L’apoptose est caractérisée par une condensation de la chromatine, une fragmentation du noyau, une contraction de la cellule et une rupture de la membrane plasmenque entraînant la formation de vésicules appelées corps apoptotiques qui sont éliminés par phagocytose. Si la cellule n’est plus en état d’assurer la synthèse d’ATP, le processus d’apoptose fait place à une nécrose : le contenu des cellules se déverse dans le milieu extracellulaire et les cellules meurent très rapidement.

Différentes conditions de stress peuvent induire une apoptose : une ischémie-reperfusion (Lemasters et al., 1998), l’addition du TNF-α (Tumor necrosis Factor-α) (Bradham et al., 1998) ou certaines substances anticancéreuses (Lim et al., 2001 ; Schmitt et Bertrand, 2001).

Plusieurs voies de transduction ont été proposées pour expliquer l’induction de l’apoptose (Bradham et al., 1998 ; Desagher et Martinou, 2000 ; Gottlieb, 2000 ; Schmitt et Bertrand, 2001 ; Lim et al., 2002). Elles sont schématisées sur la Figure 5. La liaison de ligands spécifiques sur certains récepteurs membranaires appelés « récepteurs de mort » (death receptors) peut provoquer l’activation de pro-caspases initiatrices, qui induisent, à leur tour, la maturation des caspases effectrices. Les caspases sont des protéases, activées par clivage, qui induisent l’hydrolyse de nombreuses protéines cellulaires et entraînent la mort de la cellule par apoptose.

Deux voies de transduction permettent aux caspases initiatrices d’activer les caspases effectrices : soit la quantité de caspases initiatrices est suffisante et elles activent directement les caspases effectrices par clivage, soit les caspases initiatrices engagent la voie mitochondriale. Cette voie peut également être directement induite par des signaux de mort. Des protéines pro-apoptotiques de la famille de Bcl-2 (Bax, Bak, Bad, Bim, Bik, Bid) subissent alors une translocation du cytosol vers la MME et provoquent la libération de protéines contenues dans l’espace intermembranaire. L’action de ces protéines pro-apoptotiques est inhibée par les protéines anti-apoptotiques localisées dans la MME (Bcl-2 et Bcl-xL).

Les protéines mitochondriales libérées sont : le cytochrome C, AIF (Apoptosis-inducing factor), Smac (Second mitochondrial activator of caspase) et la pro-caspase-9. Une fois dans
le cytosol, le cytochrome C s’associe à Apaf-1 (Protease activating factor 1) qui, en présence d’ATP ou de dATP, induit le recrutement de la pro-caspase 9 et la formation d’un complexe appelé apoptosome. Au sein de l’apoptosome, la pro-caspase 9 est activée puis elle se libère et provoque l’activation des caspases effectrices. De son côté, la protéine AIF migre jusqu’au noyau où elle induit la condensation de la chromatine et la fragmentation de l’ADN et la protéine Smac inhibe les IAP (Inhibitor of apoptosis proteins). L’ensemble de ces processus conduit alors à la mort de la cellule par apoptose.

Le mode de libération du cytochrome C par la mitochondrie est, actuellement, un sujet de débat (Crompton, 1999 ; Desagher et Martinou, 2000 ; Gottlieb, 2000 ; Martinou et al., 2000 ; Lim et al., 2002). Certains auteurs montrent que la libération du cytochrome C est indépendante de l’ouverture du PTP (Lim et al., 2001) alors que d’autres équipes pensent que les protéines pro- et anti-apoptotiques de la famille de Bcl-2 régulent son ouverture. Dans ce cas, l’ouverture du PTP provoquerait le gonflement des mitochondries, entraînant une rupture de la MME et la libération du cytochrome C (Bradham et al., 1998 ; Lemasters et al., 1998). Pour Shimizu et Tsujimoto, 2000, l’implication ou non du PTP dépend des protéines qui induisent l’apoptose : Bax et Bak provoquent une apoptose PTP dépendante alors que Bid et Bik induisent une apoptose qui ne nécessite pas l’ouverture du PTP. Le mode de libération du cytochrome C semble donc dépendre du type de cellule, de la nature du signal de mort et des protéines pro-apoptotiques activées.

Le processus apoptotique peut laisser place à une nécrose si l’ouverture du PTP entraîne l’hydrolyse de l’ATP matriciel, qu’elle est réalisée par un grand nombre de mitochondries et que le fonctionnement de la glycolyse ne permet pas de compenser la perte d’ATP. Dans ce cas-là, la cellule ne peut pas subvenir à ses besoins énergétiques et un processus de nécrose est initié (Lemasters et al., 1998).

En résumé, l’ouverture du PTP est aussi bien impliquée dans la mort cellulaire par apoptose que dans le phénomène de nécrose.
Figure 5 : Proposition de mécanismes conduisant à l’apoptose (d’après Desagher et Martinou, 2000 et Schmitt et Bertrand, 2001)

AIF : Apoptosis-inducing factor, Apaf-1 : Protease activating factor 1, Cyt C : Cytochrome C, Smac : Second mitochondrial activator of caspase.
Deuxième partie : LA CURCUMINE

1 PRESENTATION

Curcuma longa L. est une plante de la famille des Zingiberaceae qui pousse principalement dans les régions tropicales et subtropicales et dont la culture est très répandue en Chine et en Inde. La poudre de couleur jaune extraite de son rhizome est appelée « turmèric » et est régulièrement utilisée, dans ces pays, comme épice ou colorant. Elle sert également en médecine traditionnelle (Araujo et Leon, 2001). La recherche des composants de cette poudre a révélé la présence d’une molécule majoritaire (50-60 %) appelée curcumine et d’au moins deux autres molécules : la déméthoxy-curcumine et la bis-déméthoxy-curcumine. La structure chimique de la curcumine, représentée sur la Figure 6, fut identifiée en 1910 (Milobeedzka et al., 1910) : c’est un polyphénol comportant une chaîne aliphatique insaturée dont le nom scientifique est : 1,7-bis(4-hydroxy-3-méthoxyphényl)-1,6-heptadiène-3,5-dione.

![Figure 6 : Structure chimique de la curcumine.](image)

En solution, la curcumine est sous forme énolique.
L’étude de la curcumine dans des modèles biologiques a révélé qu’elle possédait un grand nombre de propriétés pharmacologiques (Araujo et Leon, 2001 ; Miquel et al., 2002).

2 PRINCIPALES PROPRIÉTÉS DE LA CURCUMINE

2.1 ACTIVITÉS ANTI-INFLAMMATOIRES

2.2 ACTIVITÉS ANTI-OXYDANTES

La curcumine a été testée dans différents modèles de peroxydation des lipides membranaires. Elle inhibe la lipoperoxidation dans des hépatocytes de rat traités au paracétamol (Donatus et al., 1990) et dans des microsomes de rats ayant subi un stress oxydatif généré par des radiations gamma (Khopde et al., 2000 ; Priyadarsini et al., 2003) ou un excès d’ions Fe$^{2+}$ (Reddy et Lokesh, 1994, FCT ; Sardjiman et al., 1997). L’inhibition de la lipoperoxidation par la curcumine pourrait être due en partie à sa capacité à maintenir l’activité des enzymes antioxydantes SOD, catalase et GPx (Reddy et Lokesh, 1994, FCT).
La curcumine est aussi décrite comme un piégeur de RLO. En effet, elle capture O_2^- généré par le système xanthine-xanthine oxydase (Reddy et Lokesh, 1994 MCB ; Sreejayan et Rao, 1996), interfère avec les radicaux obtenus par radiolyse pulsée (Priyadarsini, 1997 ; Jovanovic et al., 1999 ; Khopde et al., 2000) et capture les radicaux peroxydes produits par l’azo-bis-isobutyrylnitrile (Barclay et al., 2000 ; Masuda et al., 2001). Elle diminue aussi la production de monoxyde d’azote (Sreejayan et Rao, 1997).

La curcumine, décrite comme une molécule anti-oxydante, semble également présenter des propriétés pro-oxydantes. En effet, des effets contradictoires sur le taux de GSH ont été observés en présence de curcumine : il augmente dans des thymocytes en culture (Jaruga et al., 1998) et des astrocytes traités pendant un temps cours (Scapagnini et al., 2002), mais diminue dans des hépatocytes (Donatus et al., 1990) ou des astrocytes traités pendant 24 h (Scapagnini et al., 2002). De plus, des expériences chimiques ont révélées que la curcumine était capable de former des complexes avec le GSH et que cette réaction était catalysée en présence de glutathion S-transférase, indiquant que la curcumine est un substrat de cette enzyme (Mathews et Rao, 1991 ; Awasthi et al., 2000).

La curcumine présente donc des effets pro- ou anti-oxydants qui dépendent des concentrations et des conditions opératoires.

2.3 ACTIVITES ANTI-TUMORALES

L’activité anti-tumorale de la curcumine a été mise en évidence aussi bien dans des modèles de cultures cellulaires (Jiang et al., 1996 ; Kuo et al., 1996 ; Simon et al., 1998 ; Bhaumik et al., 1999 ; Choudhuri et al., 2002 ; Duvoix et al., 2003) que dans des modèles animaux. En effet l’ajout de curcumine dans l’alimentation permet de diminuer le développement de tumeurs chez certaines souris (Huang et al., 1994 ; Mahmoud et al., 2000). Différentes cibles cellulaires peuvent être à l’origine des effets de la curcumine et dépendent du type de cancer étudié. Ainsi, en inhibant les enzymes impliquées dans la voie de

L’effet anti-cancéreux de la curcumine peut aussi s’expliquer par le fait qu’elle est capable d’induire la mort des cellules cancéreuses par apoptose (Jiang et al., 1996 ; Kuo et al., 1996 ; Bhaumik et al., 1999 ; Mahmoud et al., 2000 ; Choudhuri et al., 2002 ; Duvois et al., 2003). Les mécanismes d’action proposés varient suivant le type de cellules et les conditions expérimentales. Par exemple, la curcumine inhibe la transcription de la glutathion S-transférase ce qui induit l’apoptose des cellules cancérigènes surexprimant cette enzyme (Duvois et al, 2003). La curcumine peut aussi engendrer des signaux pro-apoptotiques tels que la génération de RLO (Kuo et al., 1996 ; Bhaumik et al., 1999), le clivage protéolytique de Bcl-2 (Kuo et al., 1996), une augmentation du taux et de l’activité de la protéine p53 et la sur-expression de la protéine Bax (Choudhuri et al., 2002).

2.4 RELATIONS STRUCTURE-FONCTION

La curcumine est un composé symétrique qui possède deux motifs ferruliques et une fonction β-dicétone. De nombreuses études (Tonnesen et Greenhill, 1992 ; Nurfina et al., 1997 ; Sardjiman et al., 1997 ; Sreejayan et Rao, 1997 ; Jovanovic et al., 1999 ; Barclay et al., 2000 ; Khopde et al., 2000 ; Venkatesan et al., 2000 ; Masuda et al., 2001 ; Priyadarsini et al., 2003) ont été menées pour déterminer l’implication des différentes fonctions chimiques de la curcumine dans ses propriétés anti-oxydantes mais les résultats diffèrent suivant les équipes. L’activité anti-oxydante de la curcumine provient de sa capacité à réduire un radical en anion. Certains auteurs proposent que cette réaction entraîne, au niveau de la curcumine, la perte d’un atome d’hydrogène du groupe CH₂ placé entre les deux fonctions cétones générant le radical « central » (Figure 7a) alors que d’autres suggèrent que c’est la fonction phénol qui est impliquée, ce qui induit la formation du radical phénolique (Figure 7b).
En raison de la délocalisation de l’électron, ces deux radicaux de la curcumine sont plus stables et moins toxiques que le radical initial (HO*, O₂*, ROO*, etc…).

Figure 7 a : Formes mésomères du radical « central »
Figure 7 b : Formes mésomères du radical phénolique
Objectifs de la thèse

Dans un travail précédent (Morin et al., 2001), notre équipe a testé les effets de la curcumine sur des mitochondries hépatiques et a montré qu’elle présentait une dualité d’effets. Elle inhibe la peroxydation des lipides et la production d’O_2^{-} mais induit l’ouverture du PTP. La compréhension du mécanisme d’action mitochondrial de la curcumine constitue donc le but principal de ce travail dont les objectifs sont les suivants :

- analyser les mécanismes d’action mitochondriaux de la curcumine

- identifier les fonctions chimiques de la curcumine responsables de ses différentes propriétés. Pour ce faire, une série de molécules originales, dérivées de la curcumine, a été conçue, synthétisée et testée sur la mitochondrie. Les modifications ont été réalisées à différents niveaux : soit sur le groupement phénol, en changeant les substituants en position para et méta, soit au niveau de la structure spatiale, par rigidification de la chaîne conjuguée en remplaçant la fonction β-dicétone par une fonction cyclohexanone

- mettre en évidence des molécules plus spécifiques et donc plus efficaces, présentant soit les propriétés protectrices mitochondriales de la curcumine, soit sa capacité à induire l’ouverture du PTP.
MATERIELS ET METHODES
LES DERIVES DE LA CURCUMINE

1 SYNTHESE DE DERIVES DE LA CURCUMINE
(Pabon, 1964 ; Loupy et al., 1987 ; Babu et Rajasekharan, 1994 ; Barthélémy, 1999)

1.1 SYNTHESE DES MOLECULES BETA-DICETONIQUES

1.1.1 PROTOCOLE

La synthèse de la curcumine et des 11 dérivés β-dicétoniques (hormis le Cu09) s’effectue suivant le même protocole. La seule variante est le choix de l’arylaldéhyde de départ.

Le protoxule général de synthèse de la curcumine et des dérivés β-dicétoniques est le suivant :

La synthèse du composé Cu09 est obtenue de façon différente, directement à partir de la curcumine par catalyse de transfert de phase sans solvant. La curcumine (0,8 mmol) est mélangée à du tert-butylate de potassium (2 mmol) pendant 1 h, sous argon, sous agitation...
magnétique et à 50°C. 2 à 5% d’aliquat 336 (un ammonium quaternaire utilisé comme catalyseur de transfert de phase) est ajouté et le mélange réactionnel devient immédiatement rouge sombre. Après quelques minutes sous agitation, le 1-bromobutane est ajouté en large excès (46 mmol). La solution, très visqueuse, est laissée sous agitation à 50°C pendant 12 h. Elle s’éclairecit et devient orange. L’excès de dérivé bromé est alors évaporé sous vide partiel et le produit, obtenu avec un rendement d’environ 55%, est purifié par chromatographie.
Le schéma réactionnel est décrit en annexe 2.

1.1.2 MOLECULES SYNTHETISEES

Les spectres RMN1H ont été réalisés pour toutes les molécules décrites ci-après : les résultats sont conformes avec la structure attendue. Les composés préparés sont décrits sous la forme dicétonique.
<table>
<thead>
<tr>
<th>Molécule</th>
<th>Nom scientifique et Formule développée</th>
<th>Formule Brute</th>
<th>MM</th>
<th>Point de fusion</th>
<th>Arylaldéhyde utilisé</th>
<th>Analyse centésimale</th>
</tr>
</thead>
<tbody>
<tr>
<td>curcumine</td>
<td>1,7-bis(4-hydroxy-3- méthoxyphényl)-1,6- heptadiène-3,5-dione</td>
<td>C_{21}H_{20}O_{6}</td>
<td>368,39</td>
<td>185°C</td>
<td>4-hydroxy-3-méthoxy benzaldéhyde (ou vanilline)</td>
<td>% théorique 68,47 % trouvé 67,97 % théorique 5,47 % trouvé 5,44</td>
</tr>
<tr>
<td>Cu02</td>
<td>1,7-diphényl-1,6-heptadiène-3,5-dione</td>
<td>C_{19}H_{16}O_{2}</td>
<td>276,34</td>
<td>138°C</td>
<td>benzaldéhyde</td>
<td>% théorique 82,58 % trouvé 82,21 % théorique 5,84 % trouvé 5,80</td>
</tr>
<tr>
<td>Cu03</td>
<td>1,7-bis(4-hydroxyphényl)-1,6-heptadiène-3,5-dione</td>
<td>C_{19}H_{16}O_{4}</td>
<td>308,33</td>
<td>227°C</td>
<td>4-hydroxy benzaldéhyde</td>
<td>% théorique 74,01 % trouvé 73,62 % théorique 5,23 % trouvé 5,26</td>
</tr>
<tr>
<td>Cu04</td>
<td>1,7-bis(3-hydroxy-4- méthoxyphényl)-1,6- heptadiène-3,5-dione</td>
<td>C_{21}H_{20}O_{6}</td>
<td>368,39</td>
<td>195°C</td>
<td>3-hydroxy-4-méthoxy benzaldéhyde</td>
<td>% théorique 68,47 % trouvé 68,34 % théorique 5,47 % trouvé 5,40</td>
</tr>
<tr>
<td>Cu05</td>
<td>1,7-bis(3,4- méthylènedioxyphényl)-1,6- heptadiène-3,5-dione</td>
<td>C_{21}H_{16}O_{6}</td>
<td>364,36</td>
<td>200°C</td>
<td>3,4-(méthylène dioxy) benzaldéhyde (ou pipéronal)</td>
<td>% théorique 69,23 % trouvé 68,94 % théorique 4,43 % trouvé 4,47</td>
</tr>
<tr>
<td>Cu06</td>
<td>1,7-bis(4-hydroxy-3,5- diméthoxyphényl)-1,6- heptadiène-3,5-dione</td>
<td>C_{23}H_{24}O_{8}</td>
<td>428,44</td>
<td>203°C</td>
<td>4-hydroxy-3,5-diméthoxy benzaldéhyde</td>
<td>% théorique 64,48 % trouvé 64,60 % théorique 5,65 % trouvé 5,63</td>
</tr>
</tbody>
</table>

MM : Masse moléculaire
<table>
<thead>
<tr>
<th>Molécule</th>
<th>Nom scientifique et formule développée</th>
<th>Formule brute</th>
<th>MM</th>
<th>Point de fusion</th>
<th>Arylaldéhyde utilisé</th>
<th>Analyse centésimale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu07</td>
<td>1,7-bis(3,4,5-triméthoxyphényl)-1,6-heptadiène-3,5-dione</td>
<td>C_{23}H_{28}O_{8}</td>
<td>456,49</td>
<td>186°C</td>
<td>3,4,5-triméthoxy benzaldehyde</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>C_{25}H_{28}O_{8}</td>
<td>456,49</td>
<td>186°C</td>
<td>3,4,5-triméthoxy benzaldehyde</td>
<td>% théorique 65,78</td>
<td>% trouvé 65,98</td>
</tr>
<tr>
<td>Cu08</td>
<td>1,7-bis(3-indolyl)-1,6-heptadiène-3,5-dione</td>
<td>C_{23}H_{18}N_{2}O_{2}</td>
<td>354,41</td>
<td>155°C</td>
<td>3-formylindole</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>C_{23}H_{18}N_{2}O_{2}</td>
<td>354,41</td>
<td>155°C</td>
<td>3-formylindole</td>
<td>% théorique 77,95</td>
<td>% trouvé 77,71</td>
</tr>
<tr>
<td>Cu09</td>
<td>1,7-bis(4-butyloxy-3-méthoxyphényl)-1,6-heptadiène-3,5-dione</td>
<td>C_{29}H_{36}O_{6}</td>
<td>480,60</td>
<td>127°C</td>
<td>4-hydroxy-3,5-di-tert-butyl benzaldehyde</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>C_{29}H_{36}O_{6}</td>
<td>480,60</td>
<td>127°C</td>
<td>4-hydroxy-3,5-di-tert-butyl benzaldehyde</td>
<td>% théorique 72,48</td>
<td>% trouvé 72,53</td>
</tr>
<tr>
<td>Cu10</td>
<td>1,7-bis(4-hydroxy-3-nitrophényl)-1,6-heptadiène-3,5-dione</td>
<td>C_{19}H_{14}N_{2}O_{4}</td>
<td>398,33</td>
<td>190°C</td>
<td>4-hydroxy-3-nitro benzaldehyde</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>C_{19}H_{14}N_{2}O_{4}</td>
<td>398,33</td>
<td>190°C</td>
<td>4-hydroxy-3-nitro benzaldehyde</td>
<td>% théorique 55,03</td>
<td>% trouvé 55,22</td>
</tr>
<tr>
<td>Cu11</td>
<td>1,7-bis(4-hydroxy-3,5-di-tert-butylphényl)-1,6-heptadiène-3,5-dione</td>
<td>C_{15}H_{48}O_{4}</td>
<td>532,77</td>
<td>201°C</td>
<td>4-hydroxy-3,5-di-tert-butyl benzaldehyde</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>C_{15}H_{48}O_{4}</td>
<td>532,77</td>
<td>201°C</td>
<td>4-hydroxy-3,5-di-tert-butyl benzaldehyde</td>
<td>% théorique 78,91</td>
<td>% trouvé 78,90</td>
</tr>
<tr>
<td>Cu12</td>
<td>1,7-bis(4-hydroxy-3-fluorophényl)-1,6-heptadiène-3,5-dione</td>
<td>C_{19}H_{14}F_{2}O_{4}</td>
<td>344,32</td>
<td>209°C</td>
<td>4-hydroxy-3-fluoro benzaldehyde</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>C_{19}H_{14}F_{2}O_{4}</td>
<td>344,32</td>
<td>209°C</td>
<td>4-hydroxy-3-fluoro benzaldehyde</td>
<td>% théorique 66,28</td>
<td>% trouvé 65,92</td>
</tr>
</tbody>
</table>
Annexe 1 : Schéma de synthèse de la curcumine

Les autres dérivés β-dicétoniques sont synthétisés suivant le même protocole. Seul l’arylaldéhyde utilisé varie.
Annexe 2 : Schéma réactionnel de la synthèse du composé Cu09
1.2 SYNTHESE DES MOLECULES DE TYPE ARYLETHYLIDENYL-2,6-CYCLOHEXANONE

1.2.1 PROTOCOLE

La synthèse de la cyclovalone (2,6-bis(4-hydroxy-3-méthoxybenzyldényl)cyclohexanone) et des 10 dérivés de ce type s’effectue suivant le même protocole. Comme pour la synthèse des dérivés β-dicétoniques, la seule variante est le choix de l’arylaldéhyde.

Le protocole général de synthèse est le suivant : l’arylaldéhyde (0,061 mol) et la cyclohexanone (3,16 ml ; 0,03 mol) sont solubilisés dans le minimum d’éthanol absolu puis refroidi dans un bain de glace. Après passage d’un courant d’acide chlorhydrique gazeux dans la solution, un précipité se forme au bout d’un quart d’heure. Il est filtré et recristallisé dans l’éthanol absolu. Le produit est alors obtenu avec un rendement d’environ 90%.

Le schéma réactionnel est présenté dans l’annexe 3.

1.2.2 MOLECULES SYNTHETISÉES

Les spectres RMN1H ont été réalisés pour toutes les molécules décrites ci-après : les résultats sont conformes aux structures attendues.
<table>
<thead>
<tr>
<th>Molécule</th>
<th>Nom scientifique et Formule développée</th>
<th>Formule brute</th>
<th>MM</th>
<th>Point de fusion</th>
<th>Arylaldéhyde utilisé</th>
<th>Analyse centésimale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cy01 ou cyclovalone</td>
<td>2,6-bis(4-hydroxy-3-méthoxybenzylidényl) cyclohexanone</td>
<td>C22H22O3</td>
<td>366,42</td>
<td>180°C</td>
<td>4-hydroxy-3-méthoxy benzaldéhyde (ou vanilline)</td>
<td>% théorique 72,12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% trouvé 72,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% théorique 6,05</td>
</tr>
<tr>
<td>Cy02</td>
<td>2,6-bis(benzylidényl) cyclohexanone</td>
<td>C20H18O</td>
<td>274,36</td>
<td>115°C</td>
<td>benzaldéhyde</td>
<td>% théorique 87,56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% trouvé 87,54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% théorique 6,61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% trouvé 6,55</td>
</tr>
<tr>
<td>Cy03</td>
<td>2,6-bis(4-hydroxybenzylidényl) cyclohexanone</td>
<td>C20H18O3</td>
<td>306,36</td>
<td>>260°C</td>
<td>4-hydroxy benzaldéhyde</td>
<td>% théorique 78,41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% trouvé 78,65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% théorique 5,92</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% trouvé 6,10</td>
</tr>
<tr>
<td>Cy04</td>
<td>2,6-bis(3-hydroxy-4-méthoxybenzylidényl) cyclohexanone</td>
<td>C22H22O3</td>
<td>366,42</td>
<td>200°C</td>
<td>3-hydroxy-4-méthoxy benzaldéhyde</td>
<td>% théorique 72,12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% trouvé 71,87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% théorique 6,05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% trouvé 6,05</td>
</tr>
<tr>
<td>Cy05</td>
<td>2,6-bis(3,4-méthylène dioxybenzylidényl) cyclohexanone</td>
<td>C22H18O3</td>
<td>362,38</td>
<td>189°C</td>
<td>3,4-(méthylène dioxy) benzaldéhyde (ou pipéronal)</td>
<td>% théorique 72,92</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% trouvé 72,81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% théorique 5,01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% trouvé 4,94</td>
</tr>
<tr>
<td>Cy06</td>
<td>2,6-bis(4-hydroxy-3,5-diméthoxybenzylidényl) cyclohexanone</td>
<td>C24H26O7</td>
<td>426,46</td>
<td>151°C</td>
<td>4-hydroxy-3,5-diméthoxy benzaldéhyde</td>
<td>% théorique 67,59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% trouvé 67,89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% théorique 6,15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% trouvé 6,30</td>
</tr>
<tr>
<td>Molécule</td>
<td>Nom scientifique et formule développée</td>
<td>Formule brute</td>
<td>MM</td>
<td>Point de fusion</td>
<td>Aryl-aldéhyde utilisé</td>
<td>Analyse centésimale</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------------</td>
<td>---------------</td>
<td>-----</td>
<td>-----------------</td>
<td>-----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Cy07</td>
<td>2,6-bis(3,4,5-triméthoxybenzylidényl) cyclohexanone</td>
<td>C_{26}H_{30}O_{7}</td>
<td>454,52</td>
<td>207°C</td>
<td>3,4,5-triméthoxy benzaldéhyde</td>
<td>% théorique 68,71</td>
</tr>
<tr>
<td>Cy08</td>
<td>2,6-bis(3-indolylényl) cyclohexanone</td>
<td>C_{24}H_{20}N_{2}O_{3}</td>
<td>352,42</td>
<td>265°C</td>
<td>3-formylindole</td>
<td>% théorique 81,79</td>
</tr>
<tr>
<td>Cy10</td>
<td>2,6-bis(4-hydroxy-3-nitrobenzylidényl) cyclohexanone</td>
<td>C_{20}H_{16}N_{2}O_{7}</td>
<td>396,36</td>
<td>207°C</td>
<td>4-hydroxy-3-nitro benzaldéhyde</td>
<td>% théorique 60,61</td>
</tr>
<tr>
<td>Cy11</td>
<td>2,6-bis(4-hydroxy-3,5-di-tert-butyl benzylidényl) cyclohexanone</td>
<td>C_{20}H_{16}F_{2}O_{3}</td>
<td>530,79</td>
<td>233°C</td>
<td>4-hydroxy-3,5-di-tert-butyl benzaldéhyde</td>
<td>% théorique 81,46</td>
</tr>
<tr>
<td>Cy12</td>
<td>2,6-bis(4-hydroxy-3-fluorobenzylidényl) cyclohexanone</td>
<td>C_{20}H_{16}F_{2}O_{3}</td>
<td>342,34</td>
<td>238°C</td>
<td>4-hydroxy-3-fluoro benzaldéhyde</td>
<td>% théorique 70,17</td>
</tr>
</tbody>
</table>
Annexe 3 : Schéma réactionnel de la synthèse du Cy02
Les autres dérivés de type aryléthylidényl-2,6-cyclohexanone sont synthétisés suivant le même protocole. Seul l’arylaldéhyde utilisé varie.
Les composés synthétisés sont généralement contaminés, en faibles quantités, par les réactifs utilisés ou des produits secondaires. Après la synthèse organique, les produits sont donc purifiés et leur état de pureté est vérifié grâce à diverses techniques analytiques.

2 TECHNIQUES DE PURIFICATION DES PRODUITS DE SYNTHESE

2.1 LA RECRISTALLISATION

Cette technique permet de séparer plusieurs solides grâce à leur différence de solubilité à chaud et à froid dans un solvant ou un éluant (mélange de solvants). La recristallisation des dérivés β-dicétoniques a été réalisée dans un mélange d’acétate d’éthyle/méthanol (60/40), alors que celle des dérivés de type aryléthylidényl-2,6-cyclohexanone a été réalisée dans l’éthanol absolu. Les dérivés Cu10 et Cy10 ont été recristallisés dans le dioxane.

2.2 LA CHROMATOGRAPHIE SUR COLONNE « FLASH »

Cette technique permet de séparer les constituants d’un mélange en fonction de leurs propriétés intrinsèques (taille, structure), de leur affinité avec une phase stationnaire (billes de silice de 60 μM de diamètre, Amicon®) et de leur solubilité dans une phase mobile. A la sortie de la colonne, les différents produits sont recueillis dans des fractions distinctes.

Différentes techniques sont, ensuite, utilisées pour déterminer la pureté des produits.
3 VERIFICATION DE LA PURETE DES PRODUITS

3.1 MESURE DU POINT DE FUSION

Le point de fusion correspond à la température minimale nécessaire pour provoquer la fusion d'un produit. Cette température est caractéristique d'une substance. Deux appareils ont été utilisés pour déterminer le point de fusion : un appareil à capillaire (le solide est placé dans un capillaire chauffé par une résistance électrique) et un banc Kofler. Ce dernier est constitué d'une lame de métal chauffée à une extrémité afin de générer un banc à gradient de température. Le solide est déposé sur la lame et déplacé vers l'extrémité chauffée jusqu'à ce qu'il fonde.

3.2 RESONNANCE MAGNETIQUE NUCLEAIRE DU PROTON

Cette technique est basée sur les propriétés que les atomes d'hydrogène acquièrent lorsqu'ils sont placés dans un champ magnétique. Les signaux (spectre RMN1H) permettent d'identifier l'environnement de l'atome d'hydrogène, c'est à dire la structure chimique de la molécule. Pour réaliser les spectres, les molécules ont été solubilisées dans le chloroforme (sauf Cu12 dans un mélange DMSO-d_6 + méthanol). Les spectres RMN1H ont été réalisés avec un appareil BRUKER AC 200 ou 250. L’annexe 4 présente le spectre RMN1H de la molécule Cu07.

3.3 HPLC (CHROMATOGRAPHIE LIQUIDE HAUTE PERFORMANCE) EN PHASE INVERSE

Le principe de la HPLC est identique à celui de la chromatographie sur colonne mais cette technique est plus rapide et nécessite moins d'échantillon. La phase stationnaire est constituée de billes de silice (de 5 µm de diamètre) sur lesquelles sont greffées des chaînes aliphatiques à plusieurs atomes de carbone.
L’échantillon est injecté dans une colonne Symmetry® C8 contenant les billes de silice. Par application d’une haute pression à une des extrémités de la colonne, le passage du solvant/éluant est accéléré et les différents produits sont entraînés. Lorsqu’ils sortent de la colonne, ils sont quantifiés par mesure de leur absorption en UV (220 nm). L’annexe 5 présente les données obtenues après passage de la molécule Cu07.

3.4 LA CHROMATOGRAPHIE SUR COUCHE MINCE

Le support utilisé est une feuille de silice G montée sur une plaque d’aluminium (Merck®). L’échantillon est déposé sur la feuille de silice qui est introduite dans une cuve de chromatographie de telle manière qu’une de ses extrémités plonge dans le solvant/éluant. Ce dernier diffuse le long de la feuille de silice par capillarité et entraîne les différents composants de l’échantillon qui se répartissent entre le point de départ et le front de migration selon le même principe que la chromatographie sur colonne. Les produits sont ensuite révélés par différentes techniques : soit après passage de la plaque sous une lampe UV si ce sont des dérivés aromatiques, soit après réaction avec des cristaux d’iode (la majorité des composés organiques réagissent avec l’iode pour former des taches jaune-marron) soit à l’œil nu si les produits sont colorés. On calcule enfin le rapport frontal (Rf) qui correspond au rapport de la distance de migration / front de migration et qui est caractéristique d’une molécule pour un support et un solvant/éluant donnés.

3.5 MICROANALYSE OU ANALYSE CENTESIMALE

Cette technique permet de déterminer le pourcentage des différents éléments : C, H, O, N et S dans un produit. Pour cela, un échantillon du produit est introduit dans un analyseur élémentaire qui réalise une succession de réactions. Le produit subit d’abord une combustion à plus de 1000°C. Les gaz de combustion sont ensuite oxydés puis séparés sur une colonne chromatographique et leur concentration est déterminée. Le pourcentage des différents éléments observés est alors comparé au pourcentage théorique et permet de conclure sur la pureté du produit.
Annexe 4 : Spectre RMN1H de Cu07 (sous forme énolique)
Annexe 5 : Chromatogramme HPLC de Cu07
4 DERIVES ISSUS DU METABOLISME DE LA CURCUMINE

La vanilline, l’acide férulique et l’aldéhyde férulique sont des composés issus de la réaction entre la curcumine et des espèces radicalaires (Tonnesen et Greenhill, 1992 ; Masuda et al., 1999). Ils sont également obtenus lors de la décomposition naturelle de la curcumine en solution acqueuse (Wang et al., 1997).

4.1 LA VANILLINE

Nom scientifique : 4-hydroxy-3-méthoxybenzaldéhyde

Formule développée :

![Structural formula of vanillin](image)

Formule brute : C₈H₈O₃

Masse moléculaire : 152,1

Provenance : Sigma

4.2 L’ACIDE FERULIQUE

Nom scientifique : acide (trans)4-hydroxy-3-méthoxycinnamique

Formule développée :
Formule brute : $\text{C}_{10}\text{H}_{10}\text{O}_4$

Masse moléculaire : 194,2

Provenance : Synthé-Pharma

4.3 L’ALDEHYDE FERULIQUE

Nom scientifique : (trans) 4-hydroxy-3-méthoxycinnamaldéhyde

Formule développée :

Formule brute : $\text{C}_{10}\text{H}_{10}\text{O}_3$

Masse moléculaire : 178,19

Provenance : Aldrich
Deuxième Partie : BIOLOGIE

1 MATERIEL

1.1 ANIMAUX ET PRODUITS BIOLOGIQUES

. Rat mâle Wistar de 220-250 g, élevage Janvier ; Le Genest St Isle, France.
. Anticorps monoclonal de souris dirigé contre le cytochrome C de rat, MAB897, R&D systems, UK ; Anticorps de mouton dirigé contre les anticorps de souris et couplé à la peroxydase, Amersham Pharmacia Biotech, Les Ulis, France ; Albumine de sérum de bœuf, Sigma ; Catalase (1,4*10^6 unités/ml), Sigma ; Glutathion réductase (1920 unités/ml), Sigma ; 1-lactate déshydrogénase (6236 unités/ml), Sigma ; Peroxydase (2600 unités/mg), Sigma.

1.2 PRODUITS CHIMIQUES

Acrylamide/bis-acrylamide (solution à 30%), Sigma ; Adénosine 5’-diphosphate (ADP) (PM 427,2), Sigma ; Antimycine A (PM 541), Sigma ; Atractylate (PM 770,8), Sigma ; Bleu de bromophénol (PM 691,9), Sigma ; Bleu de nitrotriazolium (PM 817,6), Sigma ; tert-butylhydroperoxyde (PM 90,12), Sigma ; Carbonyl cyanide m-chlorophénylhydrazone (CCCP) (PM 204,6), Sigma ; Carboxyatractylate (PM 770,8), Calbiochem ; 1-chloro-2,4-dinitro-benzène (CDNB) (PM 202,6), Sigma ; Chlorure d’ammonium (NH₄Cl) (PM 53,49), Merck ; Chlorure de calcium (CaCl₂) (0,02 M), Sigma, Chlorure ferreux (FeCl₂) (PM 198,8), Sigma ; Chlorure ferrique (FeCl₃) (PM 270,3), Sigma ; Chlorure de potassium (KCl) (PM 74,55), Merck ; Chlorure de sodium (NaCl) (PM 58,44), Sigma ; Co-enzyme Q10 (PM 863,4), Sigma ; Cyanure de potassium (KCN) (PM 65,12), Prolabo ; Cyclosporine A (PM 1203), don du Pr. M. Lemaire, Novartis ; Cytochrome c oxydé (PM 12384), Sigma ; Décylubiquinone (PM 322,4), Sigma ; Diéthylmaléate (PM 172,18),
Aldrich ; N-diphényl-N’-picrylhydrazinyl (DPPH) (PM 394,3), Sigma ; Ebselen (274,2), Sigma ; Ferrozine (PM 492,5), Sigma ; Glutathion (GSH) (PM 307,33), Merck ; Glutathion oxydé (GSSG) (PM 612,6) Sigma ; Glycine (PM 75,07), Sigma ; Guanidine (PM 95,53), Sigma ; Hydroxyde de potassium (KOH) (PM 40,0), Merck ; Hydroxyde de sodium (NaOH) (PM 40,2,7), Sigma ; Mannitol (PM 182,2), Sigma ; Méthylsulfate de 4-chloro-1-méthyl-7-trifluorométhyl-quinolinium (CMTQ) (PM 342,5), Synthe-pharma ; β-mercaptopéthanol (PM 78,13), Sigma ; Monobromobimane (MBM) (PM 271,1), Sigma ; Monophosphate dipotassique (K$_2$HPO$_4$) (PM 228,23), Merck ; N-éthylmaléimide (NEM) (PM 125,13), Sigma ; Oligomycine (PM 802,43), Sigma ; Peroxyde d’hydrogène (H$_2$O$_2$) (PM 34,01), Sigma ; Persulfate d’ammonium (APS) (PM 228,2), Sigma ; Phosphate de potassium dihydrogéné (KH$_2$PO$_4$) (PM 136,09), Merck ; Progestérone (PM 314,5), Sigma ; Rhodamine 123 (PM 380,83), Molecular Probes ; Roténone (PM 394,4), Sigma ; Scopolétine (PM 192,2), Sigma ; Sodium Dodécyl Sulfate (SDS) (PM 288,4), Sigma ; Sucrose (PM 342,3), Sigma ; Sucrose ultra pur (PM 342,3), Sigma ; N,N,N’,N’-Tétraméthyléthylénediamine (Temed) (PM 116,2), Sigma ; Testostérone (PM 288,4), Sigma ; α-tocophérol (PM 430,72), Aldrich ; Triéthanolamine (PM 185,7) Sigma ; Triton X-100, Sigma ; Trizma® base (Tris) (PM 121,1), Sigma ; Trizma® Hydrochloride (Tris HCl) (PM 157,6) Sigma ; Tween 20, Sigma.

1.3 SOLVANTS, ACIDES, BASES

Acide acétoacétique (PM 108,1), Sigma ; Acide diéthylénetriaminepenta-acétique (DTPA) (PM 393,3), Sigma ; Acide éthylène dinitro tétraacétique (EDTA) (PM 404,47), Merck ; Acide éthylène glycol-bis-(aminoethylether)-N,N,N’,N’-tetraacétique (EGTA) (PM 380,4), Sigma ; Acide 5,5’-dithio-bis(2-nitrobenzoïque) (DTNB) (PM 396,3), Sigma ; Acide β-hydroxybutyrique (PM 126,1), Sigma ; Acide métaphosphorique (HPO$_4$), Sigma ; Acide 3-[N-morpholino]propanesulfonique (MOPS) (PM 209,3), Sigma ; Acide pyruvique (PM 110,0), Sigma ; Acide succinique (PM 270,1), Sigma ; Acide thiobarbiturique (PM 144,1), Sigma ; Acide trichloroacétique Merck ; Ammoniaque (NH$_3$), Merck ; N,N-diméthylformamide (DMF) (PM 73,10), Merck ; Diméthyl sulfoxide (DMSO) (PM 78,13), Merck ; Ethanol, Prolabo ; Méthanol, Prolabo.
1.4 TAMPONS UTILISES

1.4.1 TAMPONS UTILISES AVEC LES MITOCHONDRIES DE FOIE

Tampon TSE : 250 mM sucrose, 50 mM Tris, 5 mM EGTA, pH=7,2 à 4°C

Tampon TS : 250 mM sucrose, 50 mM Tris, pH=7,2 à 4°C

Tampon d’incubation 1 : 250 mM sucrose ultra pur, 5 mM KH₂PO₄, pH=7,2 à 25°C puis addition de 2 µM roténone et 6 mM succinate

Tampon d’incubation 2 : 200 mM sucrose ultra pur, 10 mM Tris, pH=7,4 à 25°C

Tampon d’incubation 3 : 150 mM sucrose ultra pur, 5 mM Tris, pH= 7,4 à 25°C puis addition de 0,5 µg/ml roténone et 0,5 µg/ml antimycine A

1.4.2 TAMPONS UTILISES AVEC LES MITOCHONDRIES DE COEUR

Tampon d’homogénéisation : 5 mM MOPS, 300 mM sucrose, 1 mM EGTA, 5 mM KH₂PO₄, 0,1% albumine de sérum de bœuf, pH=7,4 à 4°C

Tampon de lavage : 5 mM MOPS, 300 mM sucrose, 0,1% albumine de sérum de bœuf, pH=7,4 à 4°C

Tampon d’incubation : 250 mM sucrose, 6 mM succinate, 1 mM EGTA, 10 mM KCl, 10 mM MOPS, pH=7,3 à 25°

1.4.3 TAMPONS UTILISES POUR LE WESTERN-BLOT

Tampon de charge : 20% sucrose, 2,4% SDS, 5% β-mercaptoéthanol, 5% bleu de bromophénol

Tampon d’électrophorèse : 180 mM glycine, 25 mM Tris, 0,1% SDS

Tampon de transfert : 150 mM glycine, 20 mM Tris, le tout dilué dans un mélange Eau/Méthanol (4/1)

Tampon TBS-T : 20 mM Tris, 140 mM NaCl, pH=7,6, 0,1% Tween 20
2 TRAITEMENT DES ANIMAUX

La déplétion en GSH in vivo est réalisée par injection intra-péritonéale de 4 mmol/kg de diéthylmaléate, un agent provoquant la formation de conjugués stables avec le GSH (Gerard-Monnier et al., 1992). Les rats traités et témoins sont sacrifiés une heure après l’injection et les mitochondries de foie sont préparées suivant le protocole décrit au paragraphe suivant.

3 ISOLEMENTS DE MITOCHONDRIES

3.1 MITOCHONDRIES DE FOIE

Les mitochondries de foie ont été préparées suivant le protocole décrit par Jonhson et Lardy, 1967. Le foie est prélevé sur un rat mâle Wistar, sacrifié par décapitation. 5 g de foie sont pesés, coupés en petits morceaux et rincés deux fois dans du tampon TSE. Les morceaux de foie sont ensuite homogénéisés dans un potter Elvejhem (Thomas C 21729) contenant 30 ml de tampon TSE. L’homogénéisation, qui permet de casser les cellules et de libérer les mitochondries, est réalisée par aller/retour du piston dans le potter.

Les mitochondries sont séparées des extraits membranaires et du cytosol par centrifugation de l’homogénat à 600 g (1770 tr/min, rotor HS-4, centrifugeuse Sorval® RC5C plus) pendant 10 min à 4°C. Le surnageant obtenu est ensuite centrifugé à 15000 g (11000 tr/min, rotor SM 24, centrifugeuse Sorval® RC5C plus) pendant 5 min à 4°C. Après élimination du surnageant, le culot, contenant les mitochondries, est remis en suspension dans le tampon TSE et centrifugé à 15000 g pendant 5 min à 4°C. La même opération est répétée après reprise du culot dans le tampon TS.

Le culot obtenu est ensuite remis en suspension dans 200 µl de tampon TS. La solution mitochondriale est alors homogénéisée avec le potter manuel (Thomas AA 431) par un simple aller/retour du piston.
La concentration protéique est déterminée selon une méthode de dosage des acides-aminés aromatiques : la méthode de Lowry (Lowry et al., 1951). Elle est d’environ 60-80 mg/ml.

3.2 MITOCHONDRIES DE CŒUR

Les mitochondries de cœur ont été préparées suivant le protocole décrit par Starkov et Fiskum, 2001. Le cœur est prélevé sur un rat mâle Wistar, sacrifié par décapitation. Il est coupé en petits morceaux et rincé deux fois dans du tampon d’homogénéisation. L’homogénéisation est obtenue par 10 allers/retours du piston dans un potter Elvejhem (Thomas C 21729) contenant 30 ml de tampon d’homogénéisation. L’homogénat est ensuite centrifugé à 1500 g (2800 tr/min, rotor HS-4, centrifugeuse Sorval® RC5C plus) pendant 10 min à 4°C et le surnageant obtenu est centrifugé à 10000 g (8900 tr/min, rotor SM 24, centrifugeuse Sorval® RC5C plus) pendant 10 min à 4°C. Le culot, contenant les mitochondries, est lavé deux fois dans le tampon de lavage grâce à des centrifugations réalisées à 10000 g (8900 tr/min, rotor SM 24) pendant 10 min à 4°C.

Le culot obtenu est ensuite remis en suspension dans 250 µl de tampon de lavage. La solution mitochondriale est alors homogénéisée avec le potter manuel (Thomas AA 431) par un simple aller/retour du piston. La concentration protéique est déterminée selon la méthode de Lowry et est d’environ 10 mg/ml.

4 MISE EN EVIDENCE DE L’OUVERTURE DU PTP

4.1 GONFLEMENT MITOCHONDRIAL

Le gonflement mitochondrial résulte d’une modification de l’équilibre osmotique provoquée par l’ouverture du PTP qui entraîne l’entrée de solutés dans la mitochondrie. Comme le taux de lumière absorbée par une suspension de particules est inversement proportionnel à la taille des particules, le gonflement est évalué à l’aide d’un
spectrophotomètre (UV/Vis, Jasco V-530) en mesurant à 540 nm la diminution de l’absorption de la suspension mitochondriale. Il est observé dans différents protocoles.

En conditions respirantes :
1) les inducteurs de l’ouverture du PTP sont les ions phosphate et le Ca²⁺ (qui entre dans la matrice grâce à l’uniporteur calcique). L’énergie nécessaire à ce système est fournie par le succinate (Elimadi et al., 1998).

Pour cette expérience, les mitochondries (1 mg/ml) sont incubées dans 1,8 ml de tampon d’incubation 1 pendant 1 min à 25°C. Le gonflement est initié par l’addition de CaCl₂ (50 µM).

2) les mitochondries sont incubées en présence de substrat, d’ions phosphate et de Ca²⁺ (utilisés à des concentrations qui ne sont pas suffisantes pour induire l’ouverture du PTP) et le signal inducteur est une dépolarisation provoquée par ajout d’un agent découpleur, le CCCP (Carbonyl cyanide m-chlorophénylhydrazone) (Bernardi et al., 1993).

Les mitochondries (0,5 mg/ml) sont, dans ce cas, incubées pendant 2 min dans 2 ml de tampon d’incubation 2 contenant 5 mM de succinate, 2 µM de roténone, 1 µl/ml d’oligomycine, 1 mM de KH₂PO₄ et 20 µM d’EGTA. 25 µM de CaCl₂ sont ensuite ajoutés et les mitochondries sont incubées pendant 2 min. Le gonflement est initié par addition de 1 µM de CCCP.

En conditions non–respirantes (Elimadi et al., 1998) :
Ce protocole permet de se soustraire au fonctionnement de la chaîne respiratoire. Cette fois-ci, le Ca²⁺ ne pénètre pas dans la matrice en utilisant le potentiel de membrane mais grâce à son gradient de concentration. L’ouverture du PTP est donc induite par un fort excès de Ca²⁺ et par ajout d’un oxydant.

Les mitochondries (1 mg/ml) sont incubées dans 1,8 ml de tampon d’incubation 3 pendant 1 min à 25°C. Après addition de CaCl₂ (100 µM), les mitochondries sont incubées pendant 4 min et le gonflement est initié par l’addition de tert-butylhydroperoxyde (10 µM).
Le gonflement mitochondrial peut aussi être initié, dans les trois conditions décrites précédemment, par une molécule dont on veut tester l’éventuelle capacité à induire l’ouverture du PTP.

4.2 LIBERATION DU CYTOCHROME C

La libération du cytochrome C est mesurée par Western-blot. Pour cela, des mitochondries (1 mg/ml) sont mises en suspension dans 1 ml de tampon d’incubation 1 et incubées à température ambiante pendant 15 min. Ces suspensions sont ensuite centrifugées pendant 10 min à 4°C à 14000 g (14000 tr/min, centrifugeuse Hermle Z 320 K). 5 µl des surnageants obtenus sont ajoutés à 5 µl de tampon de charge et bouillis à 100°C pendant 5 min pour dénaturer les protéines.

Les échantillons sont déposés sur un gel d’électrophorèse SDS-PAGE composé d’un gel de tassement à 4% (62 mM Tris-HCl, 0,025% SDS, pH=6,8, 4% acrylamide, 45 mM APS, 0,1% Temed) et d’un gel de migration à 15% (95 mM Tris-HCl, 0,025% SDS, pH=8,8, 15% acrylamide, 22 mM APS, 0,1% Temed). La migration est réalisée dans du tampon d’électrophorèse pendant 1h à 150V. Les échantillons sont ensuite transférés sur une membrane de polyvinylidène difluoride (Sigma). Le transfert est réalisé dans du tampon de transfert avec un courant électrique de 190V appliqué pendant 90 min.

Après deux lavages dans du tampon TBS-T, la membrane est incubée à 4°C pendant la nuit dans une solution de TBS-T contenant 5% de lait en poudre et l’anticorps primaire : anticorps monoclonal de souris dirigé contre le cytochrome C de rat (dilution au 5/1000ème). Les membranes sont à nouveau lavées dans le tampon TBS-T puis incubées pendant 1h à température ambiante dans ce même tampon additionné de l’anticorps secondaire : anticorps de mouton dirigé contre les anticorps de souris et couplé à la peroxydase (dilution au 1/1000ème). La détection est réalisée grâce au kit ECL Plus (Amersham Biosciences) qui contient les substrats de la peroxydase nécessaires à la production de lumière à laquelle est exposé un film (Sigma, Kodak® BioMax MS film).
5 MESURE DES PARAMETRES FONCTIONNELS MITOCHONDRIAUX

5.1 MESURE DU POTENTIEL DE MEMBRANE (Δψ)

La mesure du Δψ s’effectue grâce à l’utilisation d’une sonde fluorescente : la rhodamine 123 dont les longueurs d’onde d’excitation et d’émission sont respectivement de 503 nm et de 527 nm (Emaus et al., 1986). La mesure de la fluorescence est effectuée au moyen du spectrofluorimètre (Perkin Elmer LS50B).

Les mitochondries sont incubées (0,5 mg/ml) dans 1,8 ml de tampon d’incubation 1 contenant 0,3 µM de rhodamine 123. La rhodamine 123, chargée positivement, pénètre dans la matrice mitochondriale tant qu’un potentiel de membrane est établi mais est rejetée dans la solution dès que le potentiel de membrane est rompu.

5.2 MESURE DE LA CONSOMMATION D’OXYGENE

5.2.1 PRINCIPE DE LA TECHNIQUE

La consommation d’oxygène est mesurée par polarographie à l’aide d’une électrode de Clark (S1 Oxygen Electrode Disc, Hansatech). Cette dernière est constituée d’un couple d’électrodes platine-argent et est immergée dans une solution saturée de KCl.

Le principe de cette technique est le suivant : une différence de potentiel est appliquée entre les deux électrodes et crée un courant électrique. L’intensité de ce courant est liée à la conductance entre l’électrode de platine, le pont KCl et l’électrode d’argent et plus il y a d’oxygène dans le milieu, meilleure est la conductance. On mesure donc la variation d’intensité du courant qui est ensuite transformée en variation de différence de potentiel, puis, après calibration, en concentration d’oxygène au moyen du logiciel fourni par Hansatech® (Oxygen Monitoring System, Hansatech).
5.2.2 CONSOMMATION D’OXYGENE PAR LES MITOCHONDRIES

Cette expérience s’effectue dans une cuve en plastique fermée d’un coté par l’électrode de Clark et de l’autre par un bouchon (Morin et al., 2001). Les mitochondries sont incubées (1 mg/ml) pendant 1 min avec du tampon d’incubation 1 dépourvu de succinate : dans ces conditions, il n’y pas de consommation d’oxygène (Stade 1). Dès l’ajout de succinate (6 mM), la chaîne respiratoire est activée et les mitochondries consomment l’oxygène du milieu (Stade 2). L’addition supplémentaire d’ADP (0,2 mM), induit la production d’ATP au niveau du complexe V ainsi que l’accélération de la consommation d’oxygène (Stade 3). Lorsque tout l’ADP est épuisé, la vitesse de consommation d’oxygène diminue et revient à un niveau similaire à celui enregistré initialement (Stade 4).

5.2.3 MESURE DES PARAMETRES RESPIRATOIRES

A chaque stade correspond une vitesse de consommation de l’oxygène exprimée en nanomoles d’oxygène par minute et par mg de protéines. Ces vitesses sont appelées, V2, V3 et V4 en fonction du stade pendant lequel elles sont mesurées.

Le contrôle respiratoire (CR) est égal au rapport de la vitesse de consommation d’oxygène en présence d’ADP (Stade 3) sur la vitesse de consommation d’oxygène en absence d’ADP (Stade 4). Il correspond donc au rapport de V3 sur V4. Ce rapport est toujours supérieur à 1. Une valeur égale à 1 (V3=V4) signifie que la phosphorylation de l’ADP est découplée de la consommation d’oxygène. Le rapport P/O est un autre paramètre respiratoire qui permet d’évaluer le rendement de la synthèse d’ATP. Il correspond, en effet, à la quantité d’ATP produit en fonction de l’oxygène consommé lors de sa production. Il est donc égal au rapport de la quantité d’ADP consommé sur la quantité d’oxygène utilisé au stade 3.

Ces deux rapports reflètent l’état de fonctionnement de la chaîne respiratoire mitochondriale.
5.3 MESURE DE L’ACTIVITÉ DU COMPLEXE III DE LA CHAINE RESPIRATOIRE

Le complexe III réduit le cytochrome C oxydé en lui transférant les électrons provenant de l’oxydation de l’ubiquinol en ubiquinone. L’activité du complexe III est donc déterminée en mesurant, par spectrophotométrie, à 550 nm, le taux de cytochrome C réduit.

Les mitochondries, après avoir subit une congélation à –80°C suivie d’une décongélation à température ambiante, sont soniquées afin de casser la membrane mitochondriale. Elles sont ensuite incubées à 37°C (2 mg/ml) dans 1 ml de tampon d’incubation 1 dépourvu de succinate mais contenant 0,1 mM de KCN, 2 mM d’EDTA et 0,1mM d’ubiquinol. Le fonctionnement du complexe III est initié par l’addition supplémentaire de 50 µM de cytochrome C oxydé. La réduction du cytochrome C est alors mesurée pendant 2 min.

5.4 MESURE DU FLUX CALCIQUE

La concentration de Ca\(^{++}\) extra-mitochondriale est mesurée en même temps que la consommation d’oxygène. La cuve en plastique permet, en effet, de fixer l’électrode de Clark ainsi que les deux électrodes utilisées pour mesurer la concentration en Ca\(^{++}\) dans la solution (une électrode calcique et une électrode de référence Ag/AgCl (Orion®)). Ces électrodes sont connectées à un ionomètre (720 A Orion).

25 µM de CaCl\(_2\) sont ajoutés à 4 ml de tampon d’incubation 1 contenant 1 µM de CsA. Le signal observé est stable et est environ de l’ordre de 50-60 mV. L’addition de mitochondries (1 mg/ml) induit simultanément la consommation d’oxygène et la pénétration du Ca\(^{++}\) dans la mitochondrie.
5.5 MESURES D’OXYDO-REDUCTION

5.5.1 MESURE DE LA PRODUCTION DE O$_2^*$

La mesure de la production d’O$_2^*$ utilise la capacité d’O$_2^*$ à réduire le bleu de nitrotétrazolium (jaune) en monoformazan (violet). La quantité de monoformazan produite, proportionnelle à la quantité d’O$_2^*$ présente dans le milieu, est mesurée par spectrophotométrie à 560 nm (Morin et al., 2001).

Les mitochondries (1 mg/ml) sont incubées pendant 1 min dans 1,2 ml de tampon d’incubation 1 dépourvu de succinate et contenant 100 µM de bleu de nitrotétrazolium et 1 µM de CsA, ajoutée pour éviter l’ouverture du PTP et le gonflement de la mitochondrie qui pourrait interférer avec la mesure de la production d’O$_2^*$; ces deux paramètres étant mesurés à des longueurs d’onde très proches (540 nm/ 560 nm). La génération d’O$_2^*$ est initiée par l’addition de 6 mM succinate.

5.5.2 MESURE DE LA PRODUCTION DE H$_2$O$_2$

La génération de H$_2$O$_2$ peut être mesurée dans un système *in vitro* à l’aide d’une molécule fluorescente : la scopolétine (Korshunov et al., 1997). En présence d’H$_2$O$_2$, la peroxydase est capable d’oxyder la scopolétine formant ainsi un composé dépourvu de propriétés fluorescentes. La génération d’H$_2$O$_2$ est donc proportionnelle à la diminution de fluorescence de la scopolétine, mesurée en utilisant des longueurs d’onde d’excitation et l’émission respectivement de 366 nm et 460 nm.
Les mitochondries de cœur sont incubées (0,3 mg/ml) pendant 1 min dans le tampon d’incubation contenant 1,2 µM de scopolétine et 10 unités de peroxydase. La production d’H₂O₂ est induite par addition de 10 µM d’antimycine A.

5.5.3 MÉSURE DE LA REDUCTION DE Fe³⁺ EN Fe²⁺

La présence d’ion Fe²⁺ est mise en évidence grâce à la ferrozine, une molécule capable de complexer l’ion Fe²⁺. Le complexe formé, qui absorbe à 560 nm, est alors détecté par spectrophotométrie (Cowart et al., 1993).

La ferrozine (100 µM) et le FeCl₃ (100 µM) sont ajoutés à 2 ml de NaCl (0,9%, pH=7). La réaction est initiée par l’ajout de molécules capables de réduire l’ion Fe³⁺ en ion Fe²⁺.

5.5.4 MÉSURE DE LA PEROXYDATION DES LIPIDES

La présence d’un système oxydo-réducteur métallique tel que le couple Fe²⁺/Fe³⁺ favorise la peroxydation des lipides. Un des composés majeurs obtenu lors de la peroxydation de la plupart des lipides est le malondialdéhyde (MDA). Le MDA est facile à détecter car il réagit avec l’acide thiobarbiturique pour former les TBARS (Thiobarbituric acid reactive substances) qui absorbent, en milieu acide, à 530 nm (Morin et al., 2001).

Les mitochondries sont donc incubées (0,2 mg/ml) dans une solution de NaCl (0,9%, 1 ml volume final) à 37°C pendant 10 min avant l’ajout de 100 µl d’un mélange FeCl₂ (500 µM)/FeCl₃ (1500 µM) et une nouvelle incubation à 37°C pendant 30 min. La réaction est arrêtée par addition de 1 ml d’acide trichloracétique (3%) et les tubes sont centrifugés à 20°C
pendant 15 min à 3000 tr/min. 1 ml de chaque surnageant est ajouté à 1 ml d’acide thiobarbiturique (1%) et incubés à 95°C pendant 30 min. La génération de TBARS est déterminée, après refroidissement, en mesurant l’absorption de chaque solution à 530 nm.

5.5.5 MESURE DE L’OXYDATION DES THIOLS

L’acide 5,5’-dithio-bis(2-nitrobenzoique) (DTNB) réagit avec les thiols libres en donnant, en milieu basique, deux molécules de thionitrobenzoate (TNB) de couleur jaune absorbant fortement à 412 nm (Hu, 1994).

\[
\text{DTNB} \quad \overset{-\text{SH}}{\longrightarrow} \quad 2 \text{TNB, absorbe à 412 nm}
\]

Les mitochondries (1 mg/ml) sont incubées pendant 15 min à 25°C dans 1 ml de tampon d’incubation 1 puis 200 µl de la solution mitochondriale sont ajoutés à 800 µl d’une solution contenant 6 M de guanidine, 1 M de NH₃, 1 M de NH₄Cl à pH=9,0 à 20 °C. Après ajout de 20 mM de DTNB et incubation pendant 15 min à température ambiante, l’absorption est déterminée par spectrophotométrie à 412 nm.

5.5.6 MESURE DE L’OXYDATION DU NAD(P)H

Le taux de NAD(P)H peut être mesuré par deux techniques différentes :

. par fluorimétrie, grâce à l’autofluorescence du NAD(P)H obtenue avec des longueurs d’onde d’excitation et d’émission de respectivement 360 et 450 nm (Minezaki et al., 1994). Dans ce cas, les mitochondries sont solubilisées (0,5 mg/ml) dans 1,8 ml de tampon d’incubation 1, dépourvu de succinate et de roténone, en présence ou en absence de molécule oxydante. La diminution de fluorescence observée correspond à l’oxydation du NAD(P)H.

. par spectrophotométrie, suite à un traitement des mitochondries décrit par Beatrice et al., 1984. Les mitochondries (2 mg/ml) sont incubées dans 3 ml de tampon d’incubation 1, en présence ou en absence de molécule oxydante, pendant 10 min à température ambiante. Les protéines sont précipitées par incubation des échantillons avec 0,6 ml d’éthanol contenant 1 M de KOH pendant 30 min. Les suspensions sont ensuite incubées 10 min dans la glace. Après
ajout de 1 ml d’une solution contenant 0,5 M de triéthanolamine, 0,4 M de KH₂PO₄ et 0,1 M de K₂HPO₄, les mitochondries sont incubées 10 min à température ambiante et sont centrifugées pendant 5 min à 14000 g (14000 tr/min, centrifugeuse Hermle Z 320 K). Le NADH est oxydé en présence de 50 mM de pyruvate et 5 µg/ml de lactate déshydrogénase ajoutés à 1,5 ml de surnageant. La disparition du NAD(P)H est, alors, mesurée à 340 nm suite à l’addition de 5 mM de GSSG et 5 µg/ml de glutathion réductase.

5.6 DETERMINATION DE LA CONCENTRATION EN GSH

Le méthylsulfate de 4-chloro-1-méthyl-7-trifluorométhyl-quinolinium (CMTQ) réagit avec tous les thiols pour former des thioéthers (Barhoumi et al., 1995).

En milieu alcalin, le CMTQ lié au GSH est spécifiquement transformé en une thiocétone qui absorbe à 400 nm.
Les mitochondries sont solubilisées (1 mg/ml) dans 1 ml de tampon d’incubation 1. Après centrifugation à 14000 g (14000 tr/min, centrifugeuse Hermle Z 320 K) à 4°C pendant 3 min, le culot est solubilisé dans 0,5 ml d’acide métaphosphorique (5%) et soumis à des ultra-sons pendant 15 sec. Après centrifugation à 14000 g à 4°C pendant 3 min, 300 µl de surnageant sont ajoutés à 600 µl d’un tampon constitué de 100 mM de KH$_2$PO$_4$, 1 mM de DTPA et 0,025% de triton X-100 à pH=7,8 à 25°C et contenant 10 mM de CMTQ. 50 µl de NaOH (30%) sont ensuite ajoutés et la solution est incubée 10 min à 25°C dans l’obscurité. L’absorption est mesurée à 400 nm.

Certaines expériences nécessitent la déplétion in vitro du GSH des mitochondries (Jocelyn et Cronshaw, 1985). Pour cela, des mitochondries de foie sont incubées (4 mg/ml) dans le tampon TSE contenant 100 µM de 1-chloro-2,4-dinitrobenzene (un substrat de la glutathion S-transférase) pendant 5 min à 30°C. La réaction est arrêtée par ajout de tampon TS à 4°C et les mitochondries sont récupérées après centrifugation à 14000 g pendant 6 min.

6 MESURE DU POUVOIR ANTI-OXYDANT D’UN PHENOL

On mesure ici la capacité d’un phénol à transformer un radical en espèce plus stable non radicaulaire. Le radical utilisé est le N-diphényl-N’-picrylhydrizinyle (DPPH*). Par une réaction de transfert d’hydrogène du phénol, le DPPH*, de couleur violette, est transformé en diphénylpicrylhydrazine, de couleur jaune. Ce changement de couleur est détecté par spectrophotométrie à 515 nm (Brand-Williams, 1995).
Les composés phénoliques, testés à différentes concentrations, sont ajoutés à une solution éthanolique de DPPH\(^\bullet\) (100 µM) et la diminution d’absorption de la solution au cours du temps est mesurée.
RESULTATS
1 LES EFFETS DE LA CURCUMINE SUR LA PHOSPHORYLATION OXYDATIVE ET LE POTENTIEL DE MEMBRANE (Δψ).

Dans un premier temps, nous avons mesuré l’effet de concentrations croissantes de curcumine sur la phosphorylation oxydative. La figure 8 montre que l’ajout de curcumine dans le milieu d’incubation provoque, de manière concentration-dépendante, une augmentation de la consommation basale d’oxygène (vitesses de consommation V2 et V4) alors qu’elle ne la modifie pas lors de la synthèse d’ATP (vitesse de consommation V3). La curcumine provoque donc une diminution du CR (rapport de V3 sur V4). Elle induit également une chute du rapport P/O indiquant qu’elle diminue le rendement de la synthèse d’ATP. La curcumine n’affectant pas la vitesse de consommation d’oxygène V3, cette diminution de rendement est indépendante d’une interaction directe avec le complexe V de la chaîne respiratoire.

Dans un deuxième temps, la curcumine a été testée sur le Δψ. La figure 9 montre que le Δψ, créé par addition de succinate, est rompu en présence de 20 µM de curcumine. La dépolarisation est de même amplitude que celle induite en présence de l’agent découplant : CCCP, indiquant qu’elle est maximale. L’addition de CsA, un inhibiteur spécifique du PTP, inhibe les effets de la curcumine.

Ces observations nous ont permis d’émettre l’hypothèse que l’action de la curcumine pourrait être due à l’ouverture du PTP. En effet, ce phénomène induit la rupture du Δψ et entraîne une augmentation de la consommation d’oxygène provoquée par l’accélération du fonctionnement de la chaîne respiratoire qui tente de compenser la chute du Δψ en libérant davantage de protons dans le milieu extérieur.
Figure 8 : Effets de concentrations croissantes de curcumine sur les paramètres respiratoires

Les mitochondries (1 mg/ml) sont incubées dans le tampon d’incubation 1 dépourvu de succinate. La consommation d’oxygène et la synthèse d’ATP sont induites par addition de 6 mM de succinate et 0,2 mM d’ADP.

A : représentation graphique des vitesses de respiration au stade initial (stade 2, □), pendant la production d’ATP (stade 3, ○) et après la consommation d’ADP (stade 4, ■).

B : représentation graphique du contrôle respiratoire (CR, ○) et du rendement de la synthèse d’ATP (P/O, ■).
Figure 9 : Effet de la curcumine sur le potentiel de membrane mitochondrial ($\Delta \Psi$)

Les mitochondries (0,5 mg/ml) sont incubées dans 1,8 ml de tampon d’incubation 1 dépourvu de succinate et contenant 0,3 µM de rhodamine 123. Le $\Delta \psi$ est établi après addition de 6 mM de succinate. Courbe a : contrôle, Courbe b : 20 µM de curcumine ajouté avant le succinate, Courbe c : 20 µM de curcumine + 1 µM de CsA ajoutés avant le succinate, Courbe d : addition de 1 µM de CCCP.
2 LA CURCUMINE INDUIT L’OUVERTURE DU PTP

L’ouverture du PTP se traduit par une altération de nombreuses fonctions mitochondriales que l’on peut mesurer de différentes manières.

Une des conséquences de l’ouverture du PTP est l’entrée de solutés dans la matrice qui entraîne le gonflement de la mitochondrie. La figure 10 représente l’effet de différentes concentrations de curcumine sur la taille des mitochondries en conditions respirantes c’est à dire en présence de substrat de la chaîne respiratoire et d’ions phosphate. On observe un effet concentration-dépendant : de 0 à 30 µM, la curcumine induit une augmentation croissante du gonflement avec une EC₅₀ égale à 15 µM alors que pour des concentrations supérieures, le gonflement décroît et s’annule en présence de 60 µM de curcumine.

Afin de déterminer l’importance du gonflement provoqué par la curcumine, l’effet maximal obtenu a été comparé à celui induit par 50 µM de Ca²⁺. En effet, le Ca²⁺ est un puissant inducteur du PTP et, dans nos conditions expérimentales, son effet est maximal à la concentration de 50 µM. On constate que la vitesse du gonflement induit par 30 µM de curcumine équivaut à 48% de celle observée en présence de 50 µM de Ca²⁺.

Le gonflement induit par la curcumine est inhibé en présence de CsA, ce qui suggère qu’elle induit bien l’ouverture du PTP. L’hypothèse de l’implication du PTP est renforcée par le fait que le gonflement induit par la curcumine est inhibé en absence d’ions phosphate. En effet, quand ces mêmes expériences sont réalisées dans un tampon tris-sucrose dépourvu d’ions phosphate, la curcumine n’induit plus le gonflement.

Il est établi par certains auteurs que l’ouverture du PTP entraîne la libération du facteur pro-apoptotique cytochrome C (paragraphe 2.4.2 des Généralités). La figure 11 montre que l’incubation des mitochondries dans les mêmes conditions que celles décrites pour la figure 10, induit, au cours du temps, la libération spontanée de cytochrome C. Ceci est du, sans doute, à la dégradation naturelle des mitochondries. On observe qu’en présence de 50 µM de Ca²⁺ ou de 30 µM de curcumine, le taux de cytochrome C libéré est respectivement multiplié par 5,3 et 3,8. Ces effets sont annulés en présence de CsA.
L’ouverture du PTP est également associée à une libération du Ca\(^{++}\) intra-matriciel dans le milieu extérieur. La figure 12 montre que le Ca\(^{++}\) pénètre dans les mitochondries après addition de succinate et est rapidement libéré dans le milieu suite à l’ajout de 1 µM de CCCP. En présence de 20 µM de curcumine, le Ca\(^{++}\) est également libéré mais de manière plus lente. Cet effet est inhibé en présence de CsA.

La curcumine provoque donc l’augmentation de la consommation d’oxygène, la diminution de la synthèse d’ATP, la rupture du Δψ, le gonflement des mitochondries, la libération de cytochrome C et la sortie du Ca\(^{++}\) matriciel. Tous ces évènements, inhibés en présence de CsA, démontrent que la curcumine induit l’ouverture du PTP.

Comme nous l’avons décrit dans le paragraphe 2.3.1 des Généralités, l’ouverture du PTP peut être provoquée en présence de différents inducteurs tels le Ca\(^{++}\), les ions phosphate, des molécules provoquant une dépolarisation, des agents oxydants ou des ligands du transporteur ADP/ATP. La curcumine étant une molécule connue pour ses propriétés oxydo-réductrices, l’hypothèse de départ la plus plausible pour expliquer son mécanisme était un effet oxydant. Pour vérifier cette hypothèse, nous avons testé l’effet inhibiteur de molécules anti-oxydantes intervenant à différents stades du processus oxydatif mitochondrial sur le gonflement induit par la curcumine en conditions respirantes. On constate qu’en présence de 10 mM de GSH (une molécule anti-oxydante), 10 000 unités de catalase (une enzyme qui induit la dismutation de H\(_2\)O\(_2\)) ou 100 µM d’α-tocophérol (un inhibiteur des radicaux peroxyls), le gonflement induit par 20 µM de curcumine est inhibé. Nous avons également testé une molécule connue pour mimer l’effet de la GPx (une enzyme qui oxyde le GSH pour réduire H\(_2\)O\(_2\) en H\(_2\)O) : l’ebselen (2-phényl-benzo[d]isosélénazol-3-one) (Schewe, 1995) dont la structure chimique est représentée sur la figure 13a. Nous avons tout d’abord confirmé l’activité GPx de l’ebselen en mesurant ses effets sur la production de H\(_2\)O\(_2\) générée par traitement des mitochondries cardiaques avec 10 µM d’antimycine A. Comme nous l’attendions, en présence d’ebselen, la production de H\(_2\)O\(_2\) diminue de manière concentration-dépendante (figure 13b).

Etonnamment, nous avons constaté que le gonflement induit par la curcumine n’était pas inhibé en présence d’ebselen mais qu’au contraire, l’effet de la curcumine était amplifié par addition de 10 µM d’ebselen. A la suite de ce travail, nous avons donc mesuré le gonflement en présence d’ebselen seul. La figure 14a montre que l’ebselen induit effectivement un
gonflement des mitochondries en conditions respirantes et que le gonflement induit par différentes concentrations d’ebselen présente le même effet rebond que celui observé en présence de curcumine. En effet, pour des concentrations inférieures à 10-15 µM, le gonflement induit par l’ebselen est concentration-dépendant et est associé à une rupture du Δψ (figure 14b) alors qu’à des concentrations supérieures, le gonflement est plus faible voire nul. Ces effets, inhibés en présence de 1 µM de CsA, indiquent que l’ebselen provoque également l’ouverture du PTP.

La similitude d’effet de la curcumine et de l’ebselen vis à vis du PTP, associée à des mécanismes apparemment différents, nous a amené, dans la suite de ce travail, à comparer ces deux molécules pour définir leurs mécanismes d’action. Nos résultats suggérant, d’autre part, que l’ouverture du PTP induite par la curcumine peut être due à la génération d’un stress oxydatif, nous avons décidé de tester les effets de la curcumine sur les RLO.
Figure 10 : La curcumine induit le gonflement mitochondrial en milieu respirant

Les mitochondries (1 mg/ml) sont pré-incubées 1 min dans 1,8 ml de tampon d’incubation 1. Le gonflement est induit par addition de 1 µM (courbe a), 10 µM (courbe b), 20 µM (courbe c), 30 µM (courbe d), 40 µM (courbe e), 50 µM (courbe f) ou 60 µM (courbe g) de curcumine. Courbe h : le gonflement est induit par 50 µM de Ca$^{++}$. Courbe i : Effet de 20 µM de curcumine en présence de 1 µM de CsA.
Figure 11 : La curcumine et ses dérivés induisent la libération du cytochrome C.

Les mitochondries sont incubées dans le tampon d’incubation 1, à température ambiante, pendant 15 min en présence de curcumine, d’un de ses dérivés ou du Ca$^{++}$, en présence (+) ou en absence (-) de 1 µM de CsA.

L’intensité du signal a été déterminée par densitométrie et représente la moyenne de 4 expériences indépendantes.
Figure 12 : Libération du Ca++ intra-mitochondrial par la curcumine

Les mitochondries (1 mg/ml) sont incubées dans 4 ml de tampon d’incubation 1 dépourvu de succinate et contenant 25 µM de CaCl\textsubscript{2}. L’addition de 6 mM de succinate induit l’entrée de Ca++.

\[\downarrow\] : addition de 20 µM de curcumine (courbe b), de 1 µM de CCCP (courbe c) ou de 20 µM de curcumine en présence de 1 µM de CsA (courbe d). Pas d’ajout (courbe a).
Les mitochondries de cœur (0,3 mg/ml) sont incubées dans le tampon d’incubation en présence de 1,2 µM de scopolétine et 10 unités de peroxydase pendant 1 min. La production de H$_2$O$_2$ est induite après addition de 10 µM d’antimycine A en absence (courbe a) ou en présence de 2,5 (courbe b), 10 (courbe c), 15 (courbe d) ou 20 (courbe e) µM d’ebselen. La calibration, réalisée avec différentes solutions de H$_2$O$_2$, révèle que 30 unités arbitraires de fluorescence correspondent à 0,1 µM de H$_2$O$_2$.
Figure 14 : Induction du gonflement mitochondrial et de la rupture de Δψ par l’ebselen

A : Les mitochondries (1 mg/ml) sont incubées dans le tampon d’incubation 1. Le gonflement est induit par 1 µM (courbe a), 2,5 µM (courbe b), 5 µM (courbe c), 10 µM (courbe d), 25 µM (courbe e) ou 50 µM (courbe f) d’ebselen. Courbe g : 10 µM d’ebselen en présence de 1 µM de CsA.

B : Les mitochondries (0,5 mg/ml) sont incubées dans le tampon d’incubation 1 dépourvu de succinate et contenant 0,3 µM de rhodamine 123. L’ajout de 6 mM de succinate induit la création d’un Δψ. Ce dernier est mesuré en absence (courbe a) ou en présence de 10 µM d’ebselen (courbe b), 1 µM de CCCP (courbe c) ou 10 µM d’ebselen + 1 µM de CsA (courbe d).
3 LES EFFETS ANTI- ET PRO-OXYDANTS DE LA CURCUMINE

Comme nous l’avons mentionné au chapitre 1.2.3 des Généralités, la chaîne respiratoire mitochondriale génère des RLO sous la forme d’O₂•⁻. La figure 15 montre qu’en présence de succinate, les mitochondries induisent la production d’O₂•⁻ et que l’addition de curcumine provoque sa diminution de façon concentration-dépendante. À 20 µM, la curcumine diminue la production d’O₂•⁻ de 60 % et à 50 µM, l’inhibition est quasiment totale.

Deux effets peuvent expliquer cette propriété de la curcumine vis à vis d’O₂•⁻ : soit elle capte les RLO une fois qu’ils sont formés, soit elle inhibe leur production en interagissant avec le complexe III. En effet, ce complexe est, dans nos conditions expérimentales, le principal générateur d’O₂•⁻. L’activité du complexe III a donc été déterminée en mesurant, par spectrophotométrie à 550 nm, la réduction du cytochrome C oxydé en présence d’ubiquinol. On constate que la curcumine n’a pas d’effet sur l’activité de ce complexe, ce qui suppose que la diminution de la production d’O₂•⁻ est plutôt due à une activité de capture d’O₂•⁻ qu’à l’inhibition de sa production.

Cette hypothèse de capture des radicaux libres par la curcumine est renforcée par le fait que la curcumine réduit le radical stable DPPH• avec une IC$_{50}$ de 12,5 µM (figure 16).

Ces propriétés anti-oxydantes de la curcumine pouvant difficilement expliquer le fait qu’elle induise l’ouverture du PTP, les effets de la curcumine ont donc été testés sur d’autres RLO.

Après dismutation, O₂•⁻ est transformé en H₂O₂, une molécule toxique lorsqu’elle est présente à fortes concentrations. La production de H₂O₂ est généralement mesurée par fluorimétrie, une technique que l’on ne peut pas utiliser pour tester les effets de la curcumine car cette dernière capte les photons. Nous avons donc tenté de mesurer le taux de H₂O₂ de manière indirecte, c’est-à-dire en déterminant l’état d’oxydo-réduction du NAD(P)H. En effet, les enzymes GPx et GR entraînent l’oxydation du NAD(P)H en présence de H₂O₂. Nous avons utiliser la technique spectrophotométrique décrite par Beatrice et al., 1984, malheureusement cette technique ne nous a pas permis de détecter la présence de NAD(P)H dans des mitochondries contrôle. Cependant nous avons montré précédemment que le
gonflement induit par la curcumine était inhibé en présence de catalase. Ceci suggère que H₂O₂ joue un rôle dans le mécanisme aboutissant à l’ouverture du PTP. L’effet de H₂O₂ peut être soit direct soit indirect s’il réagit avec des cations métalliques et génère le radical HO• selon la réaction de Fenton. Ceci nous a amené à déterminer l’effet de la curcumine sur la production du radical HO• en mesurant le taux de peroxydation des lipides. Dans cette expérience, les mitochondries sont incubées en présence d’un excès d’ions Fe²⁺/Fe³⁺ afin de stimuler la réaction de Fenton et le taux de MDA, résultat de la peroxydation de la plupart des lipides, est déterminé par spectrophotométrie. La figure 17 montre que la curcumine induit, dans ces conditions particulières, non pas une augmentation de la lipoperoxydation mais une inhibition croissante de la production de MDA avec une IC₅₀ égale à 0,7 µM. Nous avons tenté de mesurer les effets de la curcumine sur la peroxydation naturelle des lipides (c’est à dire sans qu'elle soit amplifiée par l'ajout des ions Fe²⁺/Fe³⁺) mais le taux de MDA était trop faible pour être détecté. L’ensemble de ces expériences indique donc que H₂O₂ joue un rôle dans l’ouverture du PTP par la curcumine mais ne permet pas de préciser par quel mécanisme.

Il est généralement admis que le PTP est régulé par l’état d’oxydation de fonctions thiols (paragraphe 2.3.1 des Généralités). Nous avons donc testé l’effet de la curcumine sur le taux de groupes thiols réduits. Le tableau 1 montre que la curcumine induit une oxydation croissante des groupes thiols. En effet, le taux de thiols libres passe de 100% (contrôle) à 74,3 ± 11,5 % en présence de 20 µM de curcumine. Cette oxydation est cependant moins marquée qu’après ajout de 1 mM de tert-butylhydroperoxyde (21,5 ± 2,1 % de thiols libres restant). Les groupes thiols dosés regroupent majoritairement les protéines membranaires possédant un groupe –SH et le GSH. Afin de déterminer l’implication de ces deux formes, le GSH a été dosé dans des mitochondries traitées par la curcumine. Cette dernière ne provoque pas l’oxydation du GSH. Ce sont donc les thiols membranaires qui semblent constituer la cible majeure de la curcumine.

Ainsi, la curcumine pourrait provoquer l’ouverture du PTP en induisant l’oxydation de groupes thiols et plus particulièrement des groupes thiols membranaires non régulés par le statut rédox du GSH et cet effet serait dépendant de H₂O₂.

Ces résultats opposent la curcumine à l’ebselen. En effet, l’ebselen induit non seulement une diminution « en cloche » du taux de thiols membranaires mais également une diminution
dose-dépendante du taux de GSH (tableau 2). Afin d’évaluer le rôle du GSH dans le mécanisme d’action de l’ebselen, le gonflement induit par l’ebselen a été mesuré sur des mitochondries déplétées en GSH selon deux protocoles : 1) in vivo par traitement des rats avec le diéthylmaléate et 2) in vitro par incubation des mitochondries avec le 1-chloro-2,4-dinitrobenzène. Ces deux protocoles conduisent à des diminutions respectives de 50 et 75 % en GSH. La figure 18 montre que ces deux déplétions réduisent la capacité de l’ebselen (10 µM) à induire le gonflement des mitochondries. Le rôle du GSH dans l’ouverture du PTP est également révélé par l’effet inhibiteur du NEM, du MBM et du DTT sur le gonflement induit par l’ebselen en conditions respirantes (figure 19). En effet, ces molécules empêchent l’ouverture du PTP induite par des substances qui modulent l’état rédox du GSH (paragraphe 2.3.2 des Généralités).

D’autre part, nous avons également évalué les effets de l’ebselen sur la concentration de NAD(P)H. La figure 20 montre que l’ebselen (10 µM) provoque l’oxydation du NAD(P)H, que cet effet est insensible à la CsA mais qu’il est inhibé par addition de 50 µM de NEM. Ceci suggère d’une part que l’oxydation du NAD(P)H n’est pas une conséquence de l’ouverture du PTP et d’autre part qu’elle est provoquée par l’oxydation de groupements thiols.

L’ebselen induit donc l’ouverture du PTP par un mécanisme différent de la curcumine, qui semble faire intervenir à la fois l’oxydation de fonctions thiols membranaires, celle du GSH et également celle du NAD(P)H.

Pour aller plus loin dans la compréhension du mécanisme d’action de la curcumine, nous avons testé les effets mitochondriaux de ses dérivés.
Figure 15 : Effet de la curcumine sur la production d’O$_2^\cdot$

Les mitochondries (1 mg/ml) sont incubées dans le tampon d’incubation 1 contenant 100 µM de bleu de nitrotétrazolium et 1 µM de CsA. La production d’O$_2^\cdot$ est induite par addition de 6 mM de succinate en présence de 1 µM (courbe b), 5 µM (courbe c), 10 µM (courbe d), 15 µM (courbe e), 20 µM (courbe f), 30 µM (courbe g) ou 50 µM (courbe h) de curcumine. Courbe a : courbe contrôle.
Figure 16 : Le pouvoir anti-oxydant de la curcumine

Une solution éthanolique de DPPH* (100 µM) est incubée en présence de 1 µM (courbe a), 5 µM (courbe b), 10 µM (courbe c), 15 µM (courbe d), 20 µM (courbe e), 30 µM (courbe f), 50 µM (courbe g), 75 µM (courbe h), 100 µM (courbe i) ou 150 µM (courbe j) de curcumine.

A : mesure de l’absorption à 517 nm

B : représentation graphique de la réduction du DPPH* (ΔAbs) en fonction du log de la concentration de curcumine.
Figure 17 : Effet de la curcumine sur la lipoperoxydation

Les mitochondries (0,2 mg/ml) sont incubées pendant 10 min à 37°C dans le NaCl (0,9%) avec différentes concentrations de curcumine. Après ajout du mélange FeCl$_2$/FeCl$_3$ (500/1500 µM) et incubation pendant 30 min, la réaction est arrêtée en présence d’acide trichloracétique et les tubes sont centrifugés. Les surnageants sont traités avec de l’acide thiobarbiturique et incubés à 90°C pendant 30 min. La mesure de l’absorption à 530 nm permet de déterminer le pourcentage de MDA.
Tableau 1 : La curcumine induit l’oxydation des groupes thiols.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>groupes thiols (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrôle</td>
<td>100,0 ± 1,6</td>
</tr>
<tr>
<td>t-Bh 1 mM</td>
<td>21,5 ± 2,1**</td>
</tr>
<tr>
<td>Curcumine 15 µM</td>
<td>98,9 ± 6,0*</td>
</tr>
<tr>
<td>20 µM</td>
<td>74,3 ± 11,5**</td>
</tr>
<tr>
<td>30 µM</td>
<td>72,1 ± 4,5**</td>
</tr>
<tr>
<td>40 µM</td>
<td>62,9 ± 3,6**</td>
</tr>
<tr>
<td>50 µM</td>
<td>49,7 ± 4,1**</td>
</tr>
</tbody>
</table>

t-Bh : tert-butylhydroperoxyde

La valeur du contrôle exprimée comme 100% correspond à 240 nmol de groupes thiols par mg de protéines.

Les valeurs représentent les moyennes ± écart-type de 5 expériences réalisées en triplicate.

*p<0,05; **p<0,01 par rapport à la valeur contrôle (test statistique utilisé : analyse de variances)
Tableau 2 : L’ebselen induit l’oxydation des groupes thiols

<table>
<thead>
<tr>
<th>Conditions</th>
<th>groupes thiols membranaires (%)</th>
<th>GSH (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrôle</td>
<td>100,0 ± 1,6</td>
<td>100,0 ± 0,35</td>
</tr>
<tr>
<td>t-Bh 1 mM</td>
<td>47,1 ± 3,6**</td>
<td>-</td>
</tr>
<tr>
<td>Ebselen 1µM</td>
<td>85,2 ± 5,3**</td>
<td>102,2 ± 2,9</td>
</tr>
<tr>
<td>2,5 µM</td>
<td>77,3 ± 2,7**</td>
<td>95,7 ± 2,5*</td>
</tr>
<tr>
<td>5 µM</td>
<td>67,2 ± 3,3**</td>
<td>91,7 ± 2,7**</td>
</tr>
<tr>
<td>10 µM</td>
<td>64,8 ± 4,4**</td>
<td>79,1 ± 3,1**</td>
</tr>
<tr>
<td>15 µM</td>
<td>58,3 ± 2,8**</td>
<td>73,0 ± 2,8**</td>
</tr>
<tr>
<td>20 µM</td>
<td>64,3 ± 4,1**</td>
<td>70,8 ± 1,7**</td>
</tr>
<tr>
<td>30 µM</td>
<td>82,1 ± 3,1**</td>
<td>68,6 ± 1,0**</td>
</tr>
<tr>
<td>50 µM</td>
<td>94,3 ± 3,0*</td>
<td>64,6 ± 1,5**</td>
</tr>
</tbody>
</table>

t-Bh : tert-butylhydroperoxyde

Le taux de groupes thiols membranaires est mesuré dans le culot obtenu après traitement des échantillons avec l’acide trichloracétique.

La valeur contrôle de 100% correspond à 240 nmoles de groupes thiols par mg de protéines et 5,65 nmoles de glutathion par mg de protéines.

Les valeurs représentent la moyenne ± écart type de 5 expériences réalisées en triplicate. *p<0,05; **p<0,01 par rapport à la valeur contrôle (test statistique utilisé : analyse de variances)
Figure 18 : La déplétion en GSH diminue le gonflement mitochondrial induit par l’ebselen

Le gonflement des mitochondries, incubées (1 mg/ml) dans le tampon d’incubation 1 est induit par 10 µM d’ebselen. Les mitochondries utilisées sont des mitochondries contrôle (courbe a), des mitochondries déplétées *in vivo* par le diétylmaléate (courbe b) ou des mitochondries déplétées *in vitro* par le 1-chloro-2,4-dinitrobenzene (courbe c).
Figure 19 : Effet de concentrations croissantes de NEM, MBM ou DTT sur le gonflement mitochondrial induit par l’ebselen

Représentation graphique de l’effet inhibiteur de différentes concentrations de NEM (●), MBM (■), DTT (○) sur la vitesse initiale du gonflement induit, en conditions respirantes, par 15 µM d’ebselen. Les IC₅₀ sont respectivement égales à 5,06 ± 2,76, 17,9 ± 1,87 et 34,5 ± 6,15 µM.
Figure 20 : Effet de l’ebselen sur l’oxydation du NAD(P)H mitochondrial

Les mitochondries (0,5 mg/ml) sont incubées dans le tampon d’incubation 1 dépourvu de succinate et de roténone et l’oxydation du NAD(P)H est induite par addition (↓) de 10 µM d’ebselen (courbe a). La présence de 50 µM NEM (courbe b) inhibe l’effet de l’ebselen alors que l’oxydation est maintenue en présence de 1 µM de CsA (courbe c).
EFFETS DES DERIVES DE LA CURCUMINE SUR LES MITOCHONDRIES

1 CERTAINS DERIVES INDUISENT L’OUVERTURE DU PTP

La capacité de 22 dérivés de la curcumine et de ses 3 métabolites à induire le gonflement des mitochondries a été testée dans les mêmes conditions expérimentales que celles utilisées pour étudier les effets de la curcumine. Les résultats sont présentés sur le tableau 3. Nous pouvons constater que les molécules qui induisent le gonflement en conditions respirantes l’induisent aussi en conditions non respirantes. Il s’agit des dérivés Cu04, Cu06, Cy01, Cy04 et Cy06 qui provoquent le gonflement en conditions respirantes avec des EC\textsubscript{50} respectives égales à 32, 48, 36, 15 et 91 µM. Ces dérivés semblent donc moins efficaces que la curcumine dont l’EC\textsubscript{50}, dans ces conditions, est de 15 µM.

L’étude des courbes dose-réponse de la curcumine et de ces 5 molécules, révèle qu’elles n’ont pas toutes le même comportement. Ainsi, les molécules Cu04, Cy01 et Cy04 présentent, comme la curcumine, une dose-réponse biphasique. Le gonflement maximal est observé pour des concentrations respectivement égales à 60, 60 et 20 µM et correspond à 59, 58 et 9 % du gonflement induit par 50 µM de Ca++. Contrairement à ces molécules, les dérivés Cu06 et Cy06 induisent un gonflement proportionnel à leur concentration. L’effet est maximal à 200 µM et est, respectivement, équivalent à 87 et 85 % de celui obtenu en présence de 50 µM de Ca++. Les molécules Cu04, Cu06, Cy01 et Cy06 sont donc capables d’induire un gonflement plus important que la curcumine mais pour des concentrations supérieures à 30 µM.

Les molécules provoquant le gonflement ont, ensuite, été testées pour leur capacité à engendrer la libération de cytochrome C. Les mitochondries ont donc été incubées en présence des 5 dérivés à des concentrations induisant un gonflement maximal. La figure 4 montre que les molécules Cu04, Cu06, Cy01, Cy04 et Cy06 provoquent une libération de cytochrome C très supérieure à celle observée avec les mitochondries « contrôle ». Elle est, en effet, multipliée par 3,1 pour le Cu04, par 4,5 pour le Cu06, par 4 pour le Cy01, par 2,6 pour le Cy04 et par 3 pour le Cy06. L’effet des dérivés est inhibé en présence de CsA.
Ces résultats suggèrent que les dérivés Cu04, Cu06, Cy01, Cy04 et Cy06 provoquent l’ouverture du PTP. On peut noter que la molécule Cy04 est la moins efficace pour induire le gonflement et la libération de cytochrome C.
Le comportement des dérivés Cu03, Cu12 et Cy12, qui ne sont capables d’induire un gonflement qu’en conditions non respirantes (Tableau 3), sera développé plus loin.
Le tableau 3 : Induction du gonflement par la curcumine et ses dérivés

<table>
<thead>
<tr>
<th>molécules</th>
<th>conditions respirantes*</th>
<th>conditions non-respirantes**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EC₅₀ (µM)</td>
<td>vitesse*** (%)</td>
</tr>
<tr>
<td>curcumine</td>
<td>15</td>
<td>48</td>
</tr>
<tr>
<td>Cu02</td>
<td>inactif</td>
<td></td>
</tr>
<tr>
<td>Cu03</td>
<td>inactif</td>
<td></td>
</tr>
<tr>
<td>Cu04</td>
<td>32</td>
<td>59</td>
</tr>
<tr>
<td>Cu05</td>
<td>inactif</td>
<td></td>
</tr>
<tr>
<td>Cu06</td>
<td>48</td>
<td>87</td>
</tr>
<tr>
<td>Cu07</td>
<td>inactif</td>
<td></td>
</tr>
<tr>
<td>Cu08</td>
<td>inactif</td>
<td></td>
</tr>
<tr>
<td>Cu09</td>
<td>inactif</td>
<td></td>
</tr>
<tr>
<td>Cu10</td>
<td>inactif</td>
<td></td>
</tr>
<tr>
<td>Cu11</td>
<td>inactif</td>
<td></td>
</tr>
<tr>
<td>Cu12</td>
<td>inactif</td>
<td></td>
</tr>
<tr>
<td>Cy01</td>
<td>36</td>
<td>58</td>
</tr>
<tr>
<td>Cy02</td>
<td>inactif</td>
<td></td>
</tr>
<tr>
<td>Cy03</td>
<td>inactif</td>
<td></td>
</tr>
<tr>
<td>Cy04</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>Cy05</td>
<td>inactif</td>
<td></td>
</tr>
<tr>
<td>Cy06</td>
<td>91</td>
<td>85</td>
</tr>
<tr>
<td>Cy07</td>
<td>inactif</td>
<td></td>
</tr>
<tr>
<td>Cy08</td>
<td>inactif</td>
<td></td>
</tr>
<tr>
<td>Cy10</td>
<td>inactif</td>
<td></td>
</tr>
<tr>
<td>Cy11</td>
<td>inactif</td>
<td></td>
</tr>
<tr>
<td>Cy12</td>
<td>inactif</td>
<td></td>
</tr>
<tr>
<td>Acide férulique</td>
<td>inactif</td>
<td></td>
</tr>
<tr>
<td>Aldéhyde férulique</td>
<td>inactif</td>
<td></td>
</tr>
<tr>
<td>Vanilline</td>
<td>inactif</td>
<td></td>
</tr>
</tbody>
</table>

* Conditions respirantes : le gonflement est induit par les molécules en présence d’ions phosphate.
** Conditions non respirantes : le gonflement est induit par les molécules en présence de 100 µM de CaCl₂.
*** Rapport de la vitesse du gonflement induit par les molécules sur la vitesse du gonflement induit par 50 µM Ca²⁺ multiplié par 100.

Les gonflements ont été obtenus avec 30 µM de curcumine, 60 µM de Cu04, 200 µM de Cu06, 60 µM de Cy01, 20 µM de Cy04 ou 200 µM de Cy06.
2 LES PROPRIÉTÉS PRO- ET ANTI-OXYDANTES DES DERIVES

Le tableau 4 présente les effets des dérivés de la curcumine sur le gonflement mitochondrial observé en conditions respirantes, la production d’O$_2^-$, la peroxydation des lipides, l’oxydation des groupes thiols et la réduction du DPPH$^\cdot$.

Certains dérivés sont dépourvus de toute activité. Il s’agit de Cu02, Cu05, Cu09, Cy02, Cy05 et Cy07 ainsi que des 3 métabolites de la curcumine.

D’autres dérivés présentent uniquement des propriétés anti-oxydantes. En effet, l’incubation des mitochondries en présence de 20 µM de Cu07, Cu08, Cu10, Cy03, Cy08 ou Cy10 provoque une diminution de la production d’O$_2^-$ de, respectivement, 36, 44, 39, 55, 24 et 28%. Alors que les dérivés Cu07 et Cy10 n’ont pas d’autres effets, la peroxydation des lipides est légèrement diminuée par les dérivés Cy03 et Cu10 (avec des IC$_{50}$ supérieures à 100 µM) et fortement inhibée par les dérivés Cu08 et Cy08 (avec des IC$_{50}$ égales à 8 et 1,8 µM). Ces dérivés ne présentent pas de propriétés anti-oxydantes que dans certains tests biologiques et aucun d’entre eux n’induit la réduction du radical chimique DPPH$^\cdot$. Seul, le dérivé Cu11, qui inhibe très fortement la peroxydation des lipides (avec une EC$_{50}$ égale à 0,8 µM), est capable de réduire le DPPH$^\cdot$. Ainsi, les propriétés anti-oxydantes de ces dérivés dépendent des conditions expérimentales.

Les autres dérivés ont tous la particularité de présenter, comme la curcumine, des propriétés anti- et pro-oxydantes. Il s’agit, d’une part des dérivés Cu03, Cu12 et Cy12, dont les propriétés seront détaillées ultérieurement, et d’autre part des 5 dérivés que nous avons décrits comme des inducteurs du PTP : Cu04, Cu06, Cy01, Cy04 et Cy06. Ces derniers induisent tous une inhibition des productions d’O$_2^-$ et de HO$^\cdot$, la réduction du radical DPPH$^\cdot$ et l’oxydation des groupements thiols. La molécule Cy04 est, encore dans ces tests, la moins efficace.

Il convient de noter qu’aucun des dérivés qui induit une inhibition de la génération d’O$_2^-$ n’est capable d’agir directement sur le complexe III de la chaîne respiratoire. Leur effet semble être dû, comme pour la curcumine, à une activité de capture d’O$_2^-$.

En résumé, notre étude révèle donc la présence de 3 types de dérivés. Les premiers, présentant des propriétés anti-oxydantes et étant dépourvus de la capacité à induire
l’ouverture du PTP ; les seconds, pourvus, comme la curcumine, d’une dualité d’effet et enfin, les derniers, inactifs dans tous les tests.

Dans la suite de ce travail, nous nous sommes intéressés aux dérivés présentant un comportement similaire à celui de la curcumine et nous avons tenté de définir un lien entre leur capacité à induire l’ouverture du PTP et leurs propriétés oxydo-réductrices.

Ces molécules provoquent l’inhibition de la production d’O_2^- et de la lipoperoxydation. Or parmi l’ensemble des molécules inhibant la production d’O_2^-, certaines n’induisent pas l’ouverture du PTP (Cu07, Cu08, Cy08, Cu10, Cy10, Cu11). De même, parmi les molécules qui inhibent la lipoperoxydation (Cu08, Cu10, Cu11, Cy08). Ceci permet donc de rejeter l’hypothèse selon laquelle la capture des RLO pourrait conduire à la transformation de la curcumine et de ses dérivés en radicaux toxiques capables d’induire l’ouverture du PTP.

Nos résultats suggèrent plutôt que l’ouverture du PTP serait associée à l’oxydation des groupes thiols. En effet, la curcumine, Cu04, Cu06, Cy01, Cy04 et Cy06 oxydent les groupes thiols et le taux de thiols libres dosés après traitement des mitochondries par 20 µM de chacune de ces molécules correspond respectivement à 74,3, 89,6, 77,2, 76,5, 94,3 et 65,3 % du nombre de thiols libres dosés dans les mitochondries contrôles.

L’hypothèse de l’implication de l’oxydation de groupements thiols dans le processus conduisant à l’ouverture du PTP est, également, renforcée par le fait que le gonflement induit par la curcumine est inhibé en présence de 50 µM de NEM (figure 21). En revanche, le gonflement est insensible à l’action de 50 µM de MBM, indiquant que les fonctions thiols impliquées ne sont pas celles qui sont sensibles au statut rédox du GSH. Un comportement identique est obtenu lorsque le gonflement est provoqué par 60 µM de Cu04, 200 µM de Cu06, 60 µM de Cy01, 20 µM de Cy04 ou 200 µM de Cy06.

Afin de comprendre le mécanisme par lequel la curcumine et les 5 dérivés induisant l’ouverture du PTP, provoquent l’oxydation des fonctions thiols membranaires, le gonflement a été mesuré en conditions non respirantes. Ces conditions expérimentales ont l’avantage d’éliminer le rôle de la dépolarisation membranaire dans l’ouverture du PTP puisque l’absence de respiration empêche l’établissement du $\Delta \psi$. Nous avons montré (Tableau 3) que, dans ces conditions expérimentales, la curcumine et les 5 dérivés induisent l’ouverture du PTP, ce qui indique que le mécanisme d’action de ces molécules est indépendant d’une dépolarisation. Par contre, si le tampon d’incubation des mitochondries est préalablement
dégażé sous azote (conditions qui induisent une anaérobiose), la curcumine et ses dérivés sont incapables de provoquer le gonflement mitochondrial (figure 22, courbe g). Ceci suggère que l’oxygène et peut-être certains processus oxydantifs jouent un rôle dans le mécanisme conduisant à l’ouverture du PTP. Pour vérifier cette hypothèse, nous avons testé plusieurs inhibiteurs spécifiques des RLO tels que la catalase, la ferrozine (un inhibiteur des ions Fe$^{2+}$) et le mannitol (un capteur des radicaux HO$^\cdot$). La figure 22 montre que le gonflement induit par la curcumine est diminué voire inhibé en présence de 9000 unités de catalase, de 500 µM de ferrozine ou de 120 µM de mannitol. De plus, comme dans les conditions respirantes, le gonflement provoqué par la curcumine est inhibé en présence de NEM alors que le MBM est inefficace. Des résultats similaires sont obtenus si l’ensemble de ces inhibiteurs est testé sur le gonflement provoqué par les 5 autres dérivés.

Ces observations opposent à nouveau la curcumine à l’ebselen. En effet, le gonflement provoqué par l’ebselen est insensible à 100 µM de mannitol ou 100 µM d’α-tocophérol, ce qui indique que la génération de RLO n’est pas une condition nécessaire à l’ouverture du PTP provoqué par l’ebselen.

Le fait que la ferrozine inhibe le gonflement provoqué par la curcumine et ses dérivés suggère que la réaction de Fenton est fortement impliquée dans le mécanisme d’action des molécules. Une hypothèse intéressante serait que ces molécules induisent la réduction de l’ion Fe$^{3+}$ en ion Fe$^{2+}$ et provoquent l’accélération de la réaction de Fenton conduisant à la génération de radicaux HO$^\cdot$. Ces radicaux sont connus pour leur fort pouvoir pro-oxydant et pourraient entraîner l’oxydation des fonctions thiols impliquées dans l’ouverture du PTP. Cette hypothèse semble validée par le fait qu’en présence de 20 µM de curcumine ou d’un des 5 dérivés induisant l’ouverture du PTP, l’absorption du complexe Fe$^{2+}$-ferrozine augmente au cours du temps (figure 23). Ces molécules sont donc capables de provoquer la réduction de l’ion Fe$^{3+}$ en ion Fe$^{2+}$, les molécules les plus efficaces étant la curcumine, Cu06, Cy01 et Cy06. Les dérivés Cu04 et Cy04 sont, dans ces conditions, de faibles réducteurs et les autres dérivés sont inactifs.
Tableau 4 : Effets des dérivés de la curcumine sur le gonflement mitochondrial, la production d’O₂⁺, la peroxydation des lipides, l’oxydation des groupes thiols et la réduction du DPPH⁺.

<table>
<thead>
<tr>
<th>Molécules</th>
<th>Induction du Gonflement (% à 20 µM)</th>
<th>Inhibition de la prod. d’O₂⁺ (%)</th>
<th>Inhibition de la lipoperoxydation IC₅₀ (µM)</th>
<th>Groupes thiols réduits (%)</th>
<th>Réduction du DPPH⁺ IC₅₀ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curcumine</td>
<td>oui 60</td>
<td>0,7</td>
<td>74,3 ± 11,5**</td>
<td>12,5</td>
<td></td>
</tr>
<tr>
<td>Cu02</td>
<td>non 0</td>
<td>pas d’effet</td>
<td>100 ± 5,3</td>
<td>pas d’effet</td>
<td></td>
</tr>
<tr>
<td>Cu03</td>
<td>non 100</td>
<td>3,1</td>
<td>60,8 ± 8,4**</td>
<td>380</td>
<td></td>
</tr>
<tr>
<td>Cu04</td>
<td>oui 67</td>
<td>4,1</td>
<td>89,6 ± 5,1**</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Cu05</td>
<td>non 0</td>
<td>pas d’effet</td>
<td>97,0 ± 5,1**</td>
<td>pas d’effet</td>
<td></td>
</tr>
<tr>
<td>Cu06</td>
<td>oui 37</td>
<td>18,0</td>
<td>77,2 ± 5,3**</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Cu07</td>
<td>non 36</td>
<td>pas d’effet</td>
<td>101 ± 7,8</td>
<td>pas d’effet</td>
<td></td>
</tr>
<tr>
<td>Cu08</td>
<td>non 44</td>
<td>8,0</td>
<td>97,2 ± 6,4</td>
<td>pas d’effet</td>
<td></td>
</tr>
<tr>
<td>Cu09</td>
<td>non 0</td>
<td>pas d’effet</td>
<td>115,3 ± 8,4</td>
<td>pas d’effet</td>
<td></td>
</tr>
<tr>
<td>Cu10</td>
<td>non 39</td>
<td>> 100</td>
<td>109 ± 1,7</td>
<td>pas d’effet</td>
<td></td>
</tr>
<tr>
<td>Cu11</td>
<td>non 0</td>
<td>0,8</td>
<td>98,1 ± 1,7</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Cu12</td>
<td>non 100</td>
<td>4,3</td>
<td>66,8 ± 6,5**</td>
<td>pas d’effet</td>
<td></td>
</tr>
<tr>
<td>Cy01</td>
<td>oui 56</td>
<td>4,1</td>
<td>76,5 ± 7,9**</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Cy02</td>
<td>non 0</td>
<td>pas d’effet</td>
<td>104,7 ± 4,6</td>
<td>pas d’effet</td>
<td></td>
</tr>
<tr>
<td>Cy03</td>
<td>non 55</td>
<td>> 100</td>
<td>97,3 ± 1,8</td>
<td>pas d’effet</td>
<td></td>
</tr>
<tr>
<td>Cy04</td>
<td>oui 18</td>
<td>> 100</td>
<td>94,3 ± 1,5*</td>
<td>> 400</td>
<td></td>
</tr>
<tr>
<td>Cy05</td>
<td>non 0</td>
<td>> 100</td>
<td>110,0 ± 7,2</td>
<td>pas d’effet</td>
<td></td>
</tr>
<tr>
<td>Cy06</td>
<td>oui 18</td>
<td>7,3</td>
<td>65,3 ± 4,5**</td>
<td>> 400</td>
<td></td>
</tr>
<tr>
<td>Cy07</td>
<td>non 0</td>
<td>pas d’effet</td>
<td>107,0 ± 2,0</td>
<td>pas d’effet</td>
<td></td>
</tr>
<tr>
<td>Cy08</td>
<td>non 24</td>
<td>1,8</td>
<td>112,2 ± 9,3</td>
<td>pas d’effet</td>
<td></td>
</tr>
<tr>
<td>Cy10</td>
<td>non 28</td>
<td>pas d’effet</td>
<td>102,5 ± 3,3</td>
<td>pas d’effet</td>
<td></td>
</tr>
<tr>
<td>Cy11</td>
<td>Non Soluble</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cy12</td>
<td>non 100</td>
<td>9,9</td>
<td>74,5 ± 2,6**</td>
<td>pas d’effet</td>
<td></td>
</tr>
<tr>
<td>A. férulique</td>
<td>non 0</td>
<td>> 100</td>
<td>99,8 ± 1,3</td>
<td>pas d’effet</td>
<td></td>
</tr>
<tr>
<td>Ald. férulique</td>
<td>non 0</td>
<td>pas d’effet</td>
<td>98,6 ± 2,1</td>
<td>pas d’effet</td>
<td></td>
</tr>
<tr>
<td>Vanilline</td>
<td>non 0</td>
<td>pas d’effet</td>
<td>106 ± 1,8</td>
<td>pas d’effet</td>
<td></td>
</tr>
</tbody>
</table>

Les valeurs représentent la moyenne ± écart type de 4 expériences réalisées en triplicate.

*p≤0,05; **p<0,01 par rapport à la valeur contrôle (test statistique utilisé : analyse de variances)
Figure 21 : Effet du NEM et du MBM sur le gonflement induit par la curcumine

Les mitochondries (1 mg/ml) sont incubées dans le tampon d’incubation 1. Le gonflement est induit par addition de 30 µM de curcumine en absence (courbe a) ou en présence de 50 µM de NEM (courbe b) ou de 50 µM de MBM (courbe c).

Un résultat similaire est observé en présence de 60 µM de Cu04, 200 µM de Cu06, 60 µM de Cy01, 20 µM de Cy04 et 200 µM de Cy06.
Figure 22 : Inhibition du gonflement induit par 40 µM de curcumine en conditions non respirantes

Les mitochondries (1 mg/ml) sont incubées dans le tampon d’incubation 3 en absence (courbe a) ou en présence de 50 µM de MBM (courbe b), de 9000 unités de catalase (courbe c), de 500 µM de ferrozine (courbe d), de 50 µM de NEM (courbe e) ou de 120 µM de mannitol (courbe f) pendant 1 min avant l’addition de 100 µM de Ca²⁺. Le gonflement est induit, 4 min plus tard, par l’ajout de 40 µM de curcumine. L’anaérobiose (courbe g) inhibe totalement le gonflement.
Figure 23 : Réduction de Fe$^{3+}$ en Fe$^{2+}$ par la curcumine et ses dérivés.

20 μM de molécules sont ajoutés à une solution de NaCl (0,9%) contenant 100 μM de ferrozine et 100 μM de FeCl$_3$. L’absorption mesurée correspond à la formation du complexe Fe$^{2+}$-ferrozine. Courbe a : Cy01, courbe b : curcumine, courbe c : Cu06, courbe d : Cy06, courbe e : Cu04, courbe f : Cy04. Les autres molécules sont inactives. Courbe g : pas de molécule ajoutée.
3 EFFETS DES DERIVES Cu03, Cu12 ET Cy12.

Ces dérivés possèdent la propriété de provoquer l’oxydation des fonctions thiols mais n’induisent l’ouverture du PTP qu’en conditions non respirantes. Le tableau 4 montre, en effet, qu’en présence de Cu03, Cu12 et Cy12 le taux de thiols libres mitochondrial chute respectivement de 39,2, 33,2 et 25,5 %. L’oxydation de ces fonctions thiols semble être impliquée dans l’ouverture du PTP car le gonflement induit par ces molécules en conditions non respirantes est aboli par 50 µM de NEM (figure 24). L’effet inhibiteur de la CsA (1 µM) confirme que le gonflement est bien dû à l’ouverture du PTP.

Le fait que ces molécules soient incapables d’induire le gonflement en conditions respirantes, suggère l’existence d’un effet découplant masquant leur effet pro-oxydant. Afin de vérifier cette hypothèse, nous avons étudié l’évolution du ΔΨ en présence ou en absence de ces dérivés et l’avons comparée à celle obtenue en présence de notre agent découplant de référence, le CCCP.

Les résultats sont présentés sur la figure 25. L’ajout de succinate aux mitochondries permet d’établir un ΔΨ qui est maintenu plusieurs minutes. L’addition de différentes concentrations de Cu03 ou Cy12 provoque une rupture du ΔΨ dont l’amplitude est fonction de la concentration utilisée. Le même effet est obtenu en présence de différentes concentrations de CCCP ou de Cu12 mais, pour ces deux molécules, seule la concentration induisant l’effet maximal est représentée dans la figure 25. La rupture de ΔΨ n’est pas bloquée par la CsA démontrant qu’elle est indépendante du PTP.

L’effet inhibiteur de plusieurs composés décrits comme des agents recouplants a ensuite été testé. La figure 26 montre que la rupture de ΔΨ induite par 20 µM de Cy12 est insensible à la testostérone, à la progestérone, à l’atractylate, au carboxyatractylate, au glutamate et à l’aspartate mais que le 6-kétocholestanol (6KCh) induit une inhibition dépendante de sa concentration. Les mêmes résultats sont obtenus en présence de Cu03, Cu12 et CCCP.

Le 6KCh provoque également une diminution de l’accélération de la consommation d’oxygène induite par des concentrations croissantes de Cu03, Cu12, Cy12 (Figure 27a) et de CCCP (Figure 27b). Il inhibe également la libération de Ca++ induite par ces dérivés à partir
d’une préparation de mitochondries préalablement incubées avec 25 µM de CaCl₂ (figure 28). Cet effet est obtenu en présence de CsA confirmant qu’il est indépendant de l’ouverture du PTP mais est inhibé par 1 µM de rouge de ruthénium démontrant l’implication de l’uniporteur calcique dans ce processus.

L’effet des agents découplants sur la production d’O₂⁻ a été étudié par l’équipe du Pr. Skulachev (Skulachev, 1996 ; Korshunov et al., 1997) qui a montré que la production d’O₂⁻ est maximale lorsque le milieu est riche en oxygène et lorsque les mitochondries possèdent un Δψ élevé empêchant l’oxydation d’intermédiaires de la chaîne respiratoire. L’addition d’agents découpleurs provoque alors une diminution de la production d’O₂⁻. Le tableau 4 montre, en effet, qu’en présence de 20 µM des dérivés Cu03, Cu12 ou Cy12, la production d’O₂⁻ est totalement inhibée. Cet effet est immédiat et un résultat similaire est obtenu en présence de 1 µM de CCCP (figure 29).

Comme nous l’avons mentionné précédemment, les molécules Cu03, Cu12, Cy12 et CCCP sont incapables d’induire le gonflement mitochondrial en conditions respirantes en présence d’ion phosphate. Ces molécules provoquent même, dans ces conditions, une inhibition du gonflement induit par le Ca²⁺ (figure 30) et ce, de manière concentration-dépendante, avec des IC₅₀ respectivement égales à 21,4, 5,5, 11,5 et 0,01 µM. En revanche, dans les conditions expérimentales permettant de déclencher le gonflement mitochondrial par dépolarisation, les molécules Cu03, Cu12, Cy12 et CCCP sont efficaces (figure 31a), et leur effet est inhibé en présence de 1 µM de CsA ou de 500 µM de 6KCh. Dans ces mêmes conditions, les molécules induisent la libération du cytochrome C (figure 31b).

Pris dans leur ensemble, ces résultats démontrent que les dérivés Cu03, Cu12 et Cy12 sont des agents découplants.

Par ailleurs, en collaboration avec le laboratoire de Chimie Thérapeutique de Genève, nous avons déterminé certains paramètres physico-chimiques des dérivés Cu12 et Cy12 et les avons comparés avec ceux de la curcumine et de CyO1 (Tableau 5). Nous avons constaté que les dérivés fluorés possèdent, par rapport à la curcumine et à la molécule CyO1, des valeurs de pKₐ₁ et pKₐ₂ plus acides et des valeurs de lipophilie plus grandes. Ceci indique que, dans
les conditions physiologiques, les dérivés Cu12 et Cy12 existent davantage sous forme anionique et sont plus liposolubles que les dérivés non fluorés. D’autre part, des expériences de partition, réalisées à pH 7, ont révélé que la présence d’ions Li⁺ favorisait l’accumulation des dérivés Cu12 et Cy12 dans la phase organique, ce qui confirme la capacité de ces dérivés à agir comme des agents découplants.
Figure 24 : Induction du gonflement par les dérivés Cu03, Cu12 et Cy12

Les mitochondries (1 mg/ml) sont incubées dans le tampon d’incubation 3 pendant 6 min. Après ajout de 100 μM de CaCl₂ et incubation pendant 4 min, le gonflement est induit par addition de 40 μM de Cu12 (courbe a), 40 μM de Cu03 (courbe b) ou 40 μM de Cy12 (courbes c). Le NEM (50 μM, courbe d) et la CsA (1 μM, courbe e) inhibent le gonflement induit par 40 μM de Cy12. Des résultats similaires ont été obtenus avec en présence de Cu03 ou de Cu12.
Les mitochondries (0,5 mg/ml) sont incubées dans le tampon d’incubation 1 dépourvu de succinate et contenant 0,3 µM de rhodamine 123 et 1 µM de CsA. Le Δψ est établi par addition de 6 mM de succinate. La flèche (↑) symbolise l’ajout des molécules.

A : aucun ajout (a); addition de 2,5 (b), 5 µM (c), 6 µM (d), 7,5 µM (e), 10 µM (f) ou 20 µM (g) de Cy12; addition de 20 µM de Cu12 (h)

B : addition de 5 µM (a), 7,5 µM (b), 10 µM (c), 15 µM (d) ou de 20 µM (e) de Cu03; ajout de 1 µM de CCCP (f)

Figure 25 : Effet de Cu03, Cu12, Cy12 et CCCP sur le Δψ.

Les mitochondries (0,5 mg/ml) sont incubées dans le tampon d’incubation 1 dépourvu de succinate et contenant 0,3 µM de rhodamine 123 et 1 µM de CsA. Le Δψ est établi par addition de 6 mM de succinate. La flèche (↑) symbolise l’ajout des molécules.

A : aucun ajout (a); addition de 2,5 (b), 5 µM (c), 6 µM (d), 7,5 µM (e), 10 µM (f) ou 20 µM (g) de Cy12; addition de 20 µM de Cu12 (h)

B : addition de 5 µM (a), 7,5 µM (b), 10 µM (c), 15 µM (d) ou de 20 µM (e) de Cu03; ajout de 1 µM de CCCP (f)
Figure 26 : Effet de substances recouplantes sur la rupture de ΔΨ induite par 20 µM de Cy12

Les mitochondries (0,5 mg/ml) sont incubées dans le tampon d’incubation 1 dépourvu de succinate et contenant 0,3 µM de rhodamine 123 et 1 µM de CsA. Le ΔΨ est établi par addition de 6 mM de succinate et est abolit par ajout de 20 µM Cy12.

▽ : ajout de 25 µM (b), 50 µM (c), 100 µM (d), 200 µM (e), 300 µM (f) ou 600 µM (g) de 6KCh. Les effets provoqués par 2 µM de carboxyatractylate, 2 µM d’atractylate, 500 µM de testostérone, 500 µM de progestérone, 500 µM de glutamate et 500 µM d’aspartate sont identiques (h). Courbe a : pas d’addition.
Figure 27 : Effet de Cu03, Cu12, Cy12 et CCCP sur la consommation d’oxygène

Les mitochondries (1 mg/ml) sont incubées dans le tampon d’incubation 1 et la respiration est induite par addition de 6 mM de succinate.

A : 1 minute après le déclenchement de la respiration, addition de concentrations croissantes de Cu12 (a, d), Cy12 (b, e) ou Cu03 (c, f) en absence (a, b, c) ou en présence (d, e, f) de 500 µM de 6KCh.

B : 1 minute après le déclenchement de la respiration, addition de concentrations croissantes de CCCP en absence (a) ou en présence (b) de 500 µM de 6KCh.
Figure 28 : Effets de Cu03, Cu12, Cy12 et CCCP sur la libération de Ca\(^{++}\) et la consommation d’oxygène

Les mitochondries (1 mg/ml) sont incubées dans 4 ml de tampon d’incubation 1 contenant 25 µM de CaCl\(_2\) et 1 µM de CsA. Le Ca\(^{++}\) pénètre dans la mitochondrie (A) et l’oxygène du milieu est consommé (B).

\(\downarrow\) : ajout de 20 µM de Cu03 (courbe b), 20 µM de Cy12 (courbe c), 20 µM de Cu12 (courbe d) ou 1 µM de CCCP (courbe e). Courbe a : pas d’ajout. Un résultat identique (courbe a) est obtenu lorsque les mitochondries sont pré-incubées en présence de 500 µM de 6KCh ou 1 µM de rouge de ruthénium.
Figure 29 : Effet de Cu03, Cu12, Cy12 et CCCP sur la production d’O₂⁻

Les mitochondries (1 mg/ml) sont incubées dans le tampon d’incubation 1 contenant 100 µM de bleu de nitrotétrazolium et 1 µM de CsA. La génération d’O₂⁻ est inhibée en présence de 1 µM de CCCP (courbe b), 20 µM de Cu03 (courbe c), 20 µM de Cy12 (courbe d) ou 20 µM de Cu12 (courbe e).
Les mitochondries (1 mg/ml) sont incubées dans le tampon d’incubation 1 et le gonflement est induit par addition de 25 µM de CaCl_2. L’incubation est réalisée en absence (courbe a), ou en présence de 50 µM de Cy12 (courbe b), 50 µM de Cu12 (courbe c), 50 µM de Cu03 (courbe d), 1 µM de CCCP (courbe e) ou 1 µM de CsA (courbe f).
Figure 31 : La rupture de $\Delta \psi$ induite par les molécules Cu03, Cu12, Cy12 ou CCCP provoque le gonflement (A) et la libération de cytochrome C (B).

A : Les mitochondries (0,5 mg/ml) sont incubées dans le tampon d’incubation 2 contenant 2 µM de roténone, 1 µg/ml d’oligomycine, 5 mM de succinate, 1 mM de KH$_2$PO$_4$, 20 µM d’EGTA et 25 µM de CaCl$_2$ pendant 1 min. Le gonflement est induit par addition de 1 µM de CCCP (courbe a), 20 µM de Cu12 (courbe b), 20 µM de Cy12 (courbe c) ou 20 µM de Cu03 (courbe d). Le gonflement provoqué par Cu03 est inhibé en présence de 1 µM de CsA (courbe e) ou 500 µM de 6KCh (courbe f). Un résultat similaire est obtenu en présence des autres molécules découplantes.

B : Les mitochondries sont incubées pendant 15 minutes dans les mêmes conditions que précédemment avant d’être centrifugées pendant 5 min à 14000 g. 8 µl de surnageant sont ajoutés à 5 µl de tampon de charge et sont déposés, après chauffage à 100 °C pendant 5 min, sur un gel d’électrophorèse 15/4%.
Tableau 5 : Paramètres physico-chimiques de la curcumine et des dérivés CyO1, Cu12 et Cy12.

<table>
<thead>
<tr>
<th>Composés</th>
<th>pK_{a1}</th>
<th>pK_{a2}</th>
<th>$\log P_{oct}^N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curcumine</td>
<td>9.39</td>
<td>7.97</td>
<td>3.24</td>
</tr>
<tr>
<td>Cu12</td>
<td>7.60</td>
<td>6.53</td>
<td>5.11</td>
</tr>
<tr>
<td>Cy01</td>
<td>9.52</td>
<td>8.00</td>
<td>3.67</td>
</tr>
<tr>
<td>Cy12</td>
<td>7.87</td>
<td>6.78</td>
<td>4.97</td>
</tr>
</tbody>
</table>

Les valeurs de pKa et de log P ont été mesurées par potentiométrie comme décrit par Avdeef, 1992. Les valeurs de pK_{a1} et pK_{a2} correspondent aux valeurs de pKa des deux fonctions phénols. Les valeurs de log P représentent la lipophilie des molécules déterminée dans un système n-octanol/eau.
DISCUSSION
Un grand nombre d’hypothèses ont été émises quant au mode d’action de la curcumine et il semblerait que ses cibles cellulaires soient très nombreuses et qu’elles varient suivant le type de cellules. Des études ont été menées sur différents modèles mais aucune portant sur les effets mitochondriaux de la curcumine n'avait été réalisée. Notre étude permet donc de progresser dans la compréhension du mécanisme d’action de la curcumine et révèle, qu’en plus de propriétés anti-oxydantes marquées, la curcumine est capable d’induire l’ouverture du PTP impliquée dans le processus d’apoptose. Nos résultats permettent également de proposer un mécanisme d’action mitochondriale de la curcumine et de préciser les fonctions chimiques de la molécule impliquées dans l’ouverture du PTP.

Proposition d’un mécanisme d’action de la curcumine et comparaison avec celui de l’ebselen

Dans un premier temps, les résultats obtenus nous ont permis d’éliminer deux hypothèses. 1) les effets de la curcumine au niveau de la mitochondrie ne nécessitent pas sa dégradation en vanilline, en acide férulique ou en aldéhyde férulique puisque ses 3 composés sont totalement inefficaces dans les tests utilisés. 2) la curcumine, en interagissant avec O₂⁻ et HO⁺, n’est pas transformée en radical toxique susceptible d’induire l’ouverture du PTP car d’autres dérivés présentant les mêmes propriétés anti-oxydantes que la curcumine, sont incapables d’induire le gonflement de la mitochondrie.

En revanche, l’ouverture du PTP par la curcumine pourrait faire intervenir l’oxydation de fonctions thiols membranaires qui seraient distinctes de celles régulées par le pool de GSH. Nous avons voulu comprendre par quel mécanisme ces fonctions thiols étaient oxydées. Le gonflement des mitochondries induit par la curcumine et les autres dérivés est inhibé en anaérobiose démontrant que la présence d’oxygène est indispensable à ce processus. L’utilisation de substances inhibitrices spécifiques des espèces oxygénées comme la catalase, la ferrozine ou le mannitol nous a permis de préciser le rôle de l’oxygène. En effet, ces molécules inhibent le gonflement provoqué par la curcumine et ses dérivés, indiquant que la production de RLO et plus particulièrement celle du radical HO⁺ est nécessaire à l’ouverture du PTP. Dans ce mécanisme, la présence des ions Fe²⁺, impliqués dans la réaction de Fenton,
joue un rôle de premier plan. Nous avons donc testé l’effet des dérivés induisant le gonflement des mitochondries sur le taux d’ion Fe\(^{2+}\) et avons constaté qu’ils réduisaient tous les ions Fe\(^{3+}\) en ions Fe\(^{2+}\).

Aux vues de l’ensemble de ces résultats et en accord avec des études indiquant que la curcumine catalyse la formation du radical HO\(^{•}\) en réduisant l’ion Fe\(^{3+}\) (Kunchandy et Rao, 1989 ; Tonnesen et Greenhill, 1992), nous proposons que, dans nos conditions expérimentales, la curcumine induit l’ouverture du PTP en réduisant l’ion Fe\(^{3+}\) en ion Fe\(^{2+}\), augmentant la production de HO\(^{•}\) et provoquant l’oxydation accrue de groupes thiols membranaires particuliers impliqués dans l’ouverture du PTP.

Le mécanisme d’action de la curcumine est présenté dans la figure 32. En parallèle, ce schéma propose un autre mécanisme conduisant à l’ouverture du PTP indépendamment de la formation de RLO : il s’agit de celui de l’ebselen.

En effet, notre étude révèle que l’ebselen est capable de provoquer l’ouverture du PTP. Cette propriété est étonnante car l’ebselen est plutôt réputé pour ses effets protecteurs. En effet, il présente des propriétés anti-oxydante, anti-inflammatoire et cytoprotectrice (Schewe, 1995) et diminue l’intensité des dommages générés par une période d’ischémie-reperfusion cérébrale (Imai et al., 2003), hépatique (Ozaki et al., 1997) et cardiaque (Maulik et al., 1998). Il inhibe également la génération de H\(_2\)O\(_2\) et la peroxydation des lipides (Kowaltowski et al., 1998, Boireau et al., 1999).

Nos résultats indiquent que, contrairement à la curcumine, l’ebselen induit l’ouverture du PTP par un mécanisme qui n’implique pas la génération de RLO. En effet, le gonflement des mitochondries provoqué par l’ebselen est insensible au mannitol et à l’α-tocophérol. En revanche, il est diminué si les mitochondries sont déplétées en GSH et est inhibé en présence de NEM, de MBM et de DTT. Ceci suggère que l’oxydation de fonctions thiols est impliquée dans l’ouverture du PTP induite par l’ebselen. Par contre, contrairement à la curcumine qui n’oxyde que des fonctions thiols membranaires indépendantes du statut rédox du GSH, l’ebselen induit à la fois l’oxydation des fonctions thiols membranaires et celle du GSH.

L’ebselen contient un atome de sélénium qui lui confère la capacité à mimer l’activité de la GPx, c’est-à-dire à diminuer la production de H\(_2\)O\(_2\) en provoquant l’oxydation du GSH et du NAD(P)H par l’intermédiaire de la GR. Cette propriété est illustrée par le fait que nous observons que l’oxydation du NAD(P)H induite par l’ebselen est inhibée en présence de NEM. Ainsi, sur la base de ces résultats, nous proposons, qu’en mimant l’activité de la GPx,
l’ebselen provoque l’oxydation du GSH et du NAD(P)H qui entraîne l’oxydation de fonctions thiols membranaires impliquées dans l’ouverture du PTP.

Les mécanismes d’action de la curcumine et de l’ebselen sont différents mais ils présentent un point commun important : c’est par une activité anti-oxydante que ces deux molécules provoquent l’ouverture du PTP. En effet, dans un cas, elle est induite par réduction de l’ion Fe$^{3+}$ en ion Fe$^{2+}$ et dans l’autre cas, par réduction de H$_2$O$_2$ en H$_2$O. Il semblerait que les effets anti-oxydants et la capacité à induire l’ouverture du PTP dépendent de la concentration de molécule utilisée. En effet, pour ces deux molécules, l’amplitude du gonflement est concentration-dépendante et biphasique : à faibles concentrations, le gonflement est croissant alors qu’à fortes concentrations, il est décroissant voire nul. Ainsi, la curcumine et l’ebselen aurait la capacité d’induire l’ouverture du PTP aux concentrations les plus faibles puis leurs effets anti-oxydants seraient prédominants à des concentrations plus élevées.

Par ailleurs, notre étude pourrait expliquer certains effets de la curcumine et de l’ebselen sur des cellules tumorales. En effet, des auteurs ont montré que la curcumine induisait l’apoptose des cellules AK-5 par un phénomène associé à une perte du Δψ mitochondrial et à la libération du cytochrome C (Bhaumik et al., 1999) ainsi que celle des cellules leucémiques HL-60 en induisant également la libération du cytochrome C (Anto et al., 2002). De son côté, l’ebselen provoque l’apoptose des cellules cancéreuses humaines HepG$_2$ en induisant une rupture du Δψ mitochondrial et la libération du cytochrome C (Yang et al., 2000). Nos résultats indiquent que ces phénomènes pourraient être dus à l’ouverture du PTP et suggèrent, donc, que c’est l’action mitochondriale de ces deux molécules qui serait à l’origine de leurs propriétés anti-cancéreuses.
La curcumine induit la réduction de l’ion Fe³⁺ en ion Fe²⁺, ce qui entraîne l’accélération de la réduction de H₂O₂ en HO⁻ (réaction de Fenton). Les radicaux HO⁻, très réactifs, provoquent l’oxydation de fonctions thiols membranaires régulant l’ouverture du PTP.

Figure 32 : Mécanisme d’action de la curcumine
Rôle des fonctions chimiques de la curcumine

L’autre but de cette étude était de déterminer le rôle des fonctions chimiques de la curcumine dans son mécanisme d’action mitochondrial. Un total de 22 dérivés a donc été synthétisé. Ces dérivés sont divisés en deux groupes : d’un côté, les molécules « β-dicétoniques » qui conservent la fonction β-dicétone mais sont substituées au niveau des fonctions phénol et/ou méthoxy et de l’autre, les dérivés de type « aryléthyldényl-2,6-cyclohexanone », également modifiés sur ces deux groupes mais dont la fonction β-dicétone est, en plus, remplacée par une fonction cyclohexanone.

Parmi les molécules capables d’induire l’ouverture du PTP, on trouve : la curcumine, Cu04, Cu06, Cy01, Cy04 et Cy06. Ces 6 molécules possèdent toutes une fonction phénol libre. On constate que si cette fonction est supprimée (Cu02, Cy02) ou remplacée par un groupe méthoxy (Cu07, Cy07), un groupe méthylène dioxy (Cu05, Cy05), un groupe indole (Cu08, Cy08) ou une chaîne O-butyloxy (Cu09), l’activité des composés disparaît. La présence du groupe hydroxyle libre semble donc indispensable pour induire le gonflement de la mitochondrie et la molécule est d’autant plus efficace que ce groupe est localisé en para plutôt qu’en méta de la chaîne carbonée. En effet, la curcumine et la cyclovalone sont plus puissantes que les dérivés Cu04 et Cy04.

La présence du groupe hydroxyle n’est pourtant pas suffisante car les dérivés Cy03, Cu10, Cy10, Cu11 et Cy11, qui présentent ce groupe, sont incapables d’induire le gonflement des mitochondries. L’existence d’un groupe électro-donneur en position ortho (par rapport au groupe hydroxyle) tel un méthoxy (curcumine, cyclovalone) ou deux méthoxy (Cu06, Cy06) semble nécessaire à l’activité des dérivés. Cependant ces groupes ne doivent pas, non plus, être trop encombrants (Sardjiman et al., 1997 ; Venkatesan et Rao, 2000) sinon le composé devient inactif (Cu11, Cy11). Cette idée est renforcée par le fait que la présence d’un groupe électro-attracteur en ortho, rend les dérivés inefficaces (Cu10 et Cy10).

La présence de la chaîne β-dicétone n’est pas nécessaire à l’induction du gonflement des mitochondries puisque les composés non phénoliques, pourvus de la chaîne β-dicétone, Cu02, Cu05, Cu07, Cu08 et Cu09 sont inactifs. En revanche, elle pourrait augmenter l’efficacité des
molécules. En effet, le dérivé Cu04 est un meilleur inducteur de l’ouverture du PTP que le composé Cy04.

Nos résultats montrent donc que l’ouverture du PTP par la curcumine requiert la présence du groupement phénol associé à un groupe méthoxy en ortho et que la fonction β-dicétone ne joue pas un rôle essentiel.

Etant donné que l’ouverture du PTP provoquée par la curcumine semble liée à ses propriétés anti-oxydantes, les fonctions chimiques nécessaires à cet effet pourraient aussi être impliquées dans ses propriétés anti-oxydantes. De nombreuses études ont été menées sur ce sujet. Certaines suggèrent que, contrairement à ce que nous avons proposé, la fonction β-dicétone joue un rôle clé dans les propriétés anti-oxydantes de la curcumine et que des dérivés dépourvus des fonctions phénol ou méthoxy sont aussi efficaces que la curcumine. La chaîne β-dicétone serait indispensable à la curcumine pour interagir avec les RLO (Tonnesen et Greenhill, 1992 ; Sreejayan et al., 1997) ou avec les radicaux générés par radiolyse pulsée (Jovanovic et al., 1999) ou par photodécomposition (Tonnesen et Greenhill, 1992). Ceci indique que les propriétés anti-oxydantes de la curcumine seraient dues à une réaction de transfert de protons mettant en jeu le groupe CH₂ entre les deux fonctions cétones, générant le radical « central » comme indiqué sur la figure 7a (dans le paragraphe Généralités).

Cependant, l’étude des énergies de liaison s’oppose à cette théorie et est en accord avec nos résultats car elle révèle que la liaison O-H est plus faible que la liaison CH-H. Ainsi, lorsque la curcumine capte un électron, le radical phénolique est formé plus facilement que le radical « central ». Il possède également davantage de formes mésomères (figure 7b dans le paragraphe Généralités), ce qui indique que la délocalisation de l’électron est plus grande et que le radical phénolique est plus stable que le radical « central » (Priyadarsini et al., 2003).

De nombreux auteurs confirment que la fonction phénol joue un rôle essentiel. En effet, contrairement aux composés dépourvus de fonction phénol, la curcumine capte les radicaux peroxydes (Barclay et al., 2000) et l’analyse des produits de la réaction révèle la formation d’un complexe mettant en jeu le radical phénolique de la curcumine (Masuda et al., 2001). De même, la curcumine inhibe plus fortement la peroxydation des lipides que les dérivés dépourvus de groupement phénol (Sardjiman et al., 1997 ; Venkatesan et Rao, 2000 ; Priyadarsini et al., 2003). Ceci est confirmé par nos résultats qui montrent que les dérivés phénoliques sont, en général, plus efficaces que les dérivés non phénoliques dans l’inhibition de la lipoperoxydation des mitochondries (Tableau 4).
D’autres auteurs montrent que les fonctions phénol et méthoxy, ou plus généralement un groupement hydroxyle en para et un groupement électro-donneur en méta de la chaîne carbonée, jouent un rôle essentiel. En effet, ces fonctions favorisent la capacité des molécules à réagir avec les radicaux générés par radiolyse pulsée (Priyadarsini, 1997) et améliorent l’effet anti-oxydant des molécules dans le test de réduction du DPPH* (Sreejayan et Rao, 1996 ; Venkatesan et Rao, 2000), un résultat en accord avec ceux présentés sur le tableau 4. Les auteurs suggèrent que le rôle du groupe électro-donneur serait de favoriser la formation et d’augmenter la stabilité du radical phénolique. De son côté, la fonction β-dicétone ne semble pas être indispensable aux effets anti-oxydants de la curcumine mais renforce son efficacité. En effet, nos résultats montrent que, dans l’ensemble, les propriétés anti-oxydantes des dérivés de type « cyclovalone » sont plus faibles que celles des dérivés ayant conservé la chaîne β-dicétone. De même, certaines équipes ont observé que la curcumine inhibait plus fortement la peroxydation des lipides que des molécules dont la chaîne β-dicétone était saturée (Khopde et al., 2000 ; Venkatesan et Rao, 2000). Le rôle de la fonction β-dicétone serait donc d’augmenter la stabilisation du radical phénolique en permettant à l’électron de se délocaliser sur une plus grande partie de la molécule.

Ainsi, on constate que la capacité à induire l’ouverture du PTP et les propriétés antioxydantes de la curcumine sont conférées par des fonctions chimiques identiques. En effet, dans les deux cas, les fonctions phénol et méthoxy sont décrites comme essentielles alors que la fonction β-dicétone n’a qu’un rôle complémentaire. Ceci indique que le mécanisme d’action de la curcumine est bien lié à un effet anti-oxydant et que les molécules capables d’induire la formation et la stabilité du radical phénolique sont celles qui provoquent l’ouverture du PTP.
Le cas particulier des dérivés Cu03, Cu12 et Cy12

Les dérivés Cu03, Cu12 et Cy12 présentent les propriétés caractéristiques des molécules découplantes. En effet, ils induisent, de manière concentration-dépendante, une accélération de la consommation d’oxygène et une rupture du ΔΨ, des événements associés à l’action de divers découpleurs comme le SF6847 (Starkov, Simonyan et al., 1997), la pinacidil et le diazoxide (Kupustinskiene et al., 2002), le laurate (Samartsev et al., 2000), le CCCP, le FCCP (p-trifluorométhoxycarbonylcyanide phénylhydrazone), le TTFB (tétrachlorotrifluorométhylbenzimidazole), le dinitrophénol, le pentachlorophénol ou le palmitate (Starkov et al., 1994).

La dépolarisation induite par le FCCP a été étudiée par l’équipe du Pr. Bernardi (Bernardi et al., 1993) qui a mis au point un protocole permettant d’observer, en conditions respirantes, l’ouverture du PTP induite par des agents découplants. Dans ces conditions, nous avons constaté que les molécules Cu03, Cu12 et Cy12 provoquaient le gonflement des mitochondries et la libération du cytochrome C. La dépolarisation qu’elles induisent leur permet également d’inverser le sens du passage des ions Ca²⁺ à travers l’uniporteur. Ainsi, la pré-incubation des mitochondries avec ces 3 dérivés empêche l’ouverture du PTP dans les conditions respirantes où le gonflement est provoqué par l’entrée de Ca²⁺ dans la mitochondrie. De même, lorsque ces dérivés sont ajoutés à la suspension mitochondriale après les ions Ca²⁺, ils provoquent le relargage du Ca²⁺ dans le milieu d’incubation.

Les dérivés Cu03, Cu12 et Cy12 induisent également une diminution de la production d’O₂⁻. Cet effet a été largement étudié par l’équipe du Pr. Skulachev (Korchunov et al., 1997) qui a démontré que le taux de H₂O₂ dans les mitochondries cardiaques était diminué par des protonophores. Ce phénomène pourrait être du au fait que la dépolarisation induirait la diminution de la durée de vie de l’ubisemiquinone et d’autres intermédiaires de la chaîne respiratoire impliqués dans la génération d’O₂⁻ (Skulachev, 1996).

Alors que les effets mitochondriaux des découpleurs ont été décrits dans de nombreux travaux, leur mécanisme d’action n’est pas, à ce jour, clairement établi. Le mécanisme général...
consiste à transporter des protons de l’espace intermembranaire vers la matrice mitochondriale, mais les processus utilisés dépendent des molécules effectrices. Certaines, comme la gramicidine, induisent la formation d’un pore dans la MMI (Rottenberg et Koepppe, 1989); d’autres fixent un proton de l’espace intermembranaire, traversent la membrane sous forme protonée et libère le proton dans la matrice. Un tel processus est suivi de la translocation, en sens inverse, de l’espèce déprotonée. Lors de la traversée de la membrane, l’agent découplant peut agir seul ou bien son découplage est facilité par une protéine localisée dans la MMI qui serait nécessaire au transport du décououpleur (Starkov, Bloch et al., 1997 ; Samartsev et al., 2000). Dans ce cas, l’action du découplage, à faibles concentrations, est réversée par des molécules spécifiques (Starkov et al., 1994 ; Starkov, 1997 ; Starkov, Bloch et al., 1997 ; Kopustinskiene et al., 2002).

Afin de comprendre le type de découplage médié par les 3 dérivés de la curcumine, nous avons évalué leurs effets en présence de divers agents recouplants. Nos résultats montrent que l’attractylate et le carboxyatractylate, deux inhibiteurs du transporteur ADP/ATP, ne restaurent pas les fonctions mitochondriales ; ce qui exclut un rôle éventuel de cette protéine dans le transport des dérivés. De même, l’absence d’effet recoupleur du glutamate et de l’aspartate suggère que l’échangeur glutamate/aspartate n’est pas impliqué dans le découplage médié par les 3 dérivés. Les hormones stéroides sont également inefficaces, peut-être en raison de l’absence d’albumine de sérum de bœuf dont la présence semble indispensable à leur action, soit en tant que co-facteur, soit en tant qu’inhibiteur des acides gras endogènes qui empêchent l’action des hormones stéroides (Starkov, 1997 ; Starkov, Simonyan et al., 1997). En revanche, les effets des 3 dérivés sont inhibés par des concentrations croissantes de 6KCh, suggérant que leur action nécessite une interaction avec une protéine membranaire de transport.

La nature de cette protéine reste inconnue car, contrairement à certains recoupleurs, le 6KCh ne semble pas interagir spécifiquement avec un type de transporteur. En effet, Cuéllar et al., 1997 ont montré qu’en s’incorporant dans une membrane, le 6KCh diminuait la perte de polarisation membranaire provoquée par une augmentation de température. Ceci suggère que le 6KCh est capable de réduire la fluidité membranaire et par conséquent, qu’il inhibe le transport de toutes sortes de protéines à travers la membrane, y compris celui des protéines impliquées dans le transport de substances découplantes. Cette hypothèse est appuyée par le fait que l’effet recoupleur du 6KCh est diminué lorsque les expériences de découplage sont réalisées à 37°C au lieu de 25°C (Chavez et al., 1996).
Le 6KCh possède également la propriété d’inhiber l’action des découpleurs qui traversent la MMI sous forme d’un anion \((A^-)\) comme le SF6847, le CCCP ou le FCCP mais est inefficace si le découplage est induit par des molécules qui traversent la MMI sous la forme d’un dimère anionique et protoné \((HA_2^-)\) comme le dinitrophénol (Starkov et al, 1994). Ces résultats sont en accord avec les données physico-chimiques que nous avons obtenues en collaboration avec le laboratoire de Chimie Thérapeutique de Genève. Il semble, en effet, que les dérivés Cu12 et Cy12 puissent exister sous forme anionique dans des milieux liposolubles comme la MMI et que la présence d’ions Li\(^+\) (mimant les protons) augmente leur présence dans la phase organique. Ces observations suggèrent que les dérivés Cu12 et Cy12 pourraient traverser la MMI sous forme anionique en transportant des protons, confirmant donc leur effet découpleur. La curcumine et la cyclovalone étant moins liposolubles, moins acides et présentant un pouvoir de complexation plus faible envers l’ion Li\(^+\), nous avons suggéré que la substitution du groupement méthoxy par un atome de fluor était à l’origine de ces propriétés. Le dérivé CuO3 n’a malheureusement pas été testé dans ces expériences.

Par ailleurs, nos résultats montrent aussi que les dérivés Cu03, Cu12 et Cy12 induisent, dans les conditions non respirantes, le gonflement des mitochondries. Cet effet est inhibé par la CsA et le NEM suggérant que les dérivés provoquent l’ouverture du PTP et que des fonctions thiols sont impliquées dans ce phénomène. En effet, Cu03, Cu12 et Cy12 sont capables, comme la curcumine, d’oxyder les groupements thiols mais le fait qu’ils n’induisent pas la réduction des ions Fe\(^{3+}\) en ions Fe\(^{2+}\) laisse entrevoir un processus d’oxydation différent de celui observé en présence de curcumine.

Ainsi, ces 3 dérivés sont, non seulement des découpleurs, mais également des composés capables d’induire l’oxydation de fonctions thiols impliquées dans l’ouverture du PTP.
CONCLUSION GENERALE ET PERSPECTIVES

L’objectif de ce travail était, dans un premier temps, de proposer un mécanisme d’action de la curcumine. Nos résultats indiquent qu’elle induit la réduction de l’ion Fe$^{3+}$ en ion Fe$^{2+}$, favorisant ainsi la génération du radical HO• et l’oxydation des fonctions thiols impliquées dans l’ouverture du PTP. Nous avons déterminé, dans un deuxième temps, le rôle des fonctions chimiques de la curcumine et avons montré que la présence des fonctions phénols et méthoxy favorisait l’ouverture du PTP. Or ces fonctions semblent également être indispensables aux effets anti-oxydants de la curcumine. Ceci renforce donc l’hypothèse d’un mécanisme d’action commun provoquant l’ouverture du PTP et l’effet anti-oxydant.

Une autre partie de cette étude a consisté à étudier les effets mitochondriaux de dérivés modifiés sur certaines fonctions chimiques de la curcumine. Ainsi, nous avons mis en évidence, deux familles de molécules possédant des propriétés très intéressantes. La première est constituée de 9 molécules. Il s’agit des dérivés : Cu04, Cu06, Cy01, Cy04, Cy06, Cu03, Cu12 et Cy12 qui sont capables, comme la curcumine, de promouvoir le gonflement des mitochondries et la libération du cytochrome C, c’est à dire d’induire l’ouverture du PTP dans certaines conditions. Leur effet sur des lignées de cellules cancéreuses mériterait donc d’être testé. Parmi ces molécules, 3 sont des découpleurs, ce qui pourrait renforcer leur propriété pro-apoptotique puisque des résultats montrent qu’un traitement avec l’agent découplant FCCP induit l’apoptose de cellules leucémiques humaines (Stoetzer et al., 2002). La deuxième famille de dérivés est constituée de 7 molécules : Cu07, Cy03, Cu08, Cy08, Cu10, Cy10 et Cu11. Ces composés présentent uniquement des propriétés anti-oxydantes et constituent donc un pool de molécules prometteuses dans la protection des cellules face à un stress oxydatif tel que le processus d’ischémie-reperfusion.

Ainsi les 3 objectifs que nous avons fixés au début de ce travail ont été atteints. Il reste maintenant à tester les dérivés pro-apoptotiques sur des lignées de cellules cancéreuses et les dérivés aux propriétés anti-oxydantes dans des modèles d’ischémie-reperfusion.
REFERENCES

Anto RJ, Mukhopadhyay A, Denning K, Aggarwal BB (2002) Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release : its suppression by ectopic expression of Bcl-2 and Bcl-xl, Carcinogenesis, 23(1) : 143-150

Babu KV, Rajasekharan KN (1994) Simplified condition for synthesis of curcumin 1 and other curcuminoids, OPPI Briefs, 26(6) : 674-677

Barthélémy S, Doctorat de l’Université Paul Sabatier (Toulouse III), option Chimie Médicinale, soutenue le 6 mai 1999, « Conception de dérivés phénoliques conjugués : synthèses et études de l’activité sur des pathologies impliquant le stress oxydant »

Chernyak BV, Bernardi P (1996) The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites, Eur. J. Biochem. 238 : 623-630

Halestrap AP, Davidson AM (1990) Inhibition of Ca++-induced large amplitude swelling of liver and heart mitochondria by ciclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing with the adenine nucleotide translocase, Biochem. J., 268 : 153-160

Haworth RA, Hunter DR (1979) The Ca++ induced membrane transition in mitochondria. II. Nature of the Ca++ trigger site, Arch. Biochem. Biophys., 195(2) : 460-467

Ichas F, Jouaville LS, Mazat JP (1997) Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals, Cell, 89 : 1145-1153

Milobeedzka J, Kostanecki SV, Lampe V (1910) Ber., 43 : 2163

Starkov AA, Dedukhova VI, Skulachev VP (1994) 6-ketocholestanol abolishes the effect of the most potent uncouplers of oxidative phosphorylation in mitochondria, FEBS Lett., 355 : 305-308

Tonnesen HH, Greenhill JV (1992) Studies on curcumin and curcuminoids. XXII: Curcumin as a reducing agent and as a radical scavenger, Int. J. Pharm., 87 : 79-87

Turrens JF (1997), Superoxide production by the mitochondrial respiratory chain, Biosci. Rep., 17(1) : 3-7

